112755 (591175), страница 7
Текст из файла (страница 7)
Участвуя в игре, участники упорно и настойчиво пытаются достичь правильного результата игры, старательно решают задания и проверяют их, умственно трудятся. У детей воспитывается соответствующие качества личности, развивается интерес к математике.
Математическая карусель.
К этому виду игр относится одна игра, которая так и называется «Математическая карусель» . Отнести ее к другим играм довольно таки сложно, так как она имеет отличительные от всех, свойственные только ей особенности. Поэтому по моему мнению ее следует отнести к отдельному виду математических игр.
Игра является командной, проводиться обычно между несколькими классами, возможно даже между школами. Игра имеет два рубежа. Изначально команда находится на исходном рубеже. Важен так же порядок, в котором сидят участники команды, все ее участники должны иметь порядковый номер. Команде выдается задача. Если команда решит задачу, то первый ее участник отправляется на зачетный этап, где ему выдается зачетная задача, за которую команде и будут начисляться баллы. В это же время оставшиеся на исходном рубеже участники команды решают следующую задачу, правильное решение которой позволит перейти на зачетный рубеж следующему члену команды. Таким образом на зачетном рубеже зачетные задачи будут решать больше учеников. И так далее. Если же на зачетном рубеже ученики не правильно решают задачу, то участник с наименьшим порядковым номером возвращается на исходный рубеж. Вот поэтому то игра и называется «Математической каруселью», так как в ней постоянно происходит круговое движение участников.
За каждой командой должен следить отдельный человек (или за двумя командами), он же проверяет правильность решения задач, и соблюдение всех правил игры.
В такой игре принимают участие обычно сильные, увлекающиеся математикой, ученики. Их привлекает к участию в ней необычность самой игры, трудность предложенных задач и сложность получения баллов. Ведь баллы засчитываются только за решение задач на зачетном рубеже, которые обычно сложнее, чем на исходном рубеже. Познавательный интерес к математике у таких детей становиться еще больше.
Математические бои.
К такому виду игр относят непосредственно сам «Математический бой» , «Морской бой» , различные баталии.
В таких боях обычно участвуют две команды, которые соревнуются между собой в уровне имеющихся у них математических знаниях. Участвуют в боях обычно самые сильные и способные ученики в классе, по отношению к математике.
В таких играх также важно не только хорошо уметь решать задачи, но и правильно выбрать стратегию игры.
Правила математического боя:
Игра состоит из двух частей. Сначала команды получают условия задач и определенное время на их решение. По истечении этого времени начинается собственно и сам бой. Бой состоит из нескольких раундов. В начале каждого раунда одна из команд вызывает другую на одну из задач, решения которых еще не рассказывались. После этого вызванная команда сообщает, принимает ли она вызов, то есть согласна ли рассказывать решение этой задачи. Если да, то она выставляет докладчика, который должен рассказать решение, а вызвавшая команда выставляет оппонента, обязанности которого – искать в решении ошибки. Если нет, то докладчика обязана выставить команд, которая вызвала, а отказавшаяся выставить оппонента.
Ход раунда: В начале раунда докладчик рассказывает решение. Пока доклад не окончен, оппонент может задавать вопросы только с согласия докладчика. После окончания доклада оппонент имеет право задавать вопросы докладчику. Если в течение минуты оппонент не задал ни одного вопроса, то считается, что у него нет вопросов. Если докладчик в течение минуты не начинает отвечать на вопрос, то считается, что у него нет ответа. После окончания диалога докладчика и оппонента жюри задает свои вопросы. При необходимости оно может вмешиваться и раньше.
Если по ходу дискуссии жюри установило, что оппонент доказал отсутствие у докладчика решения и ранее не произошел отказ от вызова, то возможны два варианта. Если вызов на этот раунд был принят, то оппонент получает право (но не обязан) рассказать свое решение. Если оппонент взялся рассказывать свое решение, то происходит полная перемена ролей: бывший докладчик становится оппонентом и может зарабатывать баллы за оппонирование. Если же вызов на этот раунд был принят, то говорят, что вызов был не корректным. В этом случае перемена ролей не происходит, а команда, вызывавшая некорректно, должна снова вызывать соперника в следующем раунде. Во всех остальных случаях в следующем раунде вызывает та команда, которая была вызвана в текущем раунде.
Каждая задача оценивается в 12 баллов, которые по итогам раунда распределяются между докладчиком, оппонентом и жюри.
Бой заканчивается, когда не остается необсужденных задач либо когда одна из команд отказывается от вызова, а другая команда отказывается рассказывать решение оставшихся задач.
Если по окончании боя результаты команд отличаются не больше чем на 3 балла, то считается, что бой закончился вничью. В противном случае побеждает та команда, которая набрала больше баллов. Может в игре выиграть и жюри.
Этот вид игры являются довольно таки необычными и позволяют привлечь школьников к внеклассной работе по математике, развить их познавательный интерес к предмету.
Разновозрастные игры.
Этот вид игры проводится в основном между разновозрастными командами в малокомплектной школе. Например, игра «Математический хоккей» . Правила этой игры таковы:
Игра проводится для нескольких команд. Команда состоит не менее чем из 6 человек. Игра напоминает настоящий хоккей. Отличие лишь в том, что команд в игре может участвовать больше, чем в обычном хоккее (больше двух), и бьются они не друг против друга. Задача каждой команды не допустить, чтобы в ее ворота забили гол. Выигрывает та команда, которой это лучше удалось по сравнению с остальными. Встреча может проходить в классной комнате. Каждая команда занимает один ряд. «Выбрасывание шайбы» состоит в том, что командам сообщается условие первой задачи: либо читается вслух, либо условие пишется на доске. В течение 5 минут ее решает «центральный нападающий» - ученик 5 класса, сидящий за первой партой. Если пятиклассник ее решит, то считается, что «шайба» отбита. Если же не решит, то решение дают «два крайних нападающих» - ученики 6 класса. Если и они не решат в течение 2-3 минут, то судейская бригада, в которую целесообразно включить девятиклассников, предлагает дать решение двум «защитникам» - ученикам 7 класса. И если они «шайбу не отобьют», то вся надежда на «вратаря» - ученика 8 класса. Для этого выбирается наиболее подготовленный ученик. В случае его неудачи «шайба» считается заброшенной в «ворота» команды. «Шайбы» вбрасываются через каждые 3-5 минут, чтобы поддерживать темп игры. Внешняя занимательность игры возбуждает интерес школьников к математике.
Выше перечисленные виды игр могут переплетаться, игра может сочетать в себе элементы разных игр. В связи с этим, на практике наблюдается многообразие математических игр. Проведение внеклассных занятий в форме математических игр позволит их разнообразить, привлечь к ним разные группы учащихся: интересующихся математикой, не проявляющих явного интереса, слабых, сильных и т.п. Правильно выбранный вид математической игры с учетом возраста и типа учащихся способствует привлечению большего числа школьников к внеклассной работе по математике, возникновения у них интереса к предмету.
2.4 Структура математической игры
Математическая игра имеет устойчивую структуру, которая отличает ее от всякой другой деятельности.
Основными структурными компонентами математической игры являются: игровой замысел, правила, игровые действия, содержание, оборудование, результат игры. Остановимся более подробно на отдельных структурных компонентах математической игры.
Игровой замысел – первый структурный компонент игры. Он выражен, как правило, в названии игры. Игровой замысел заложен в той задаче или системе задач, которые нужно решить в течение игрового процесса. Игровой замысел часто выступает в виде вопроса, как бы проектирующего ход игры, или в виде загадки. В любом случае он придает игре не только развлекательный, но и познавательный характер, предъявляет к участникам игры определенные требования в отношении знаний.
Любая игра имеет правила, которые определяют порядок действий и поведения учащихся в процессе игры, способствует созданию непринужденной обстановки, но в то же время рабочей. Правила математических игр должны разрабатываться с учетом поставленных целей и индивидуальных возможностей учащихся. Этим создается условие для проявления самостоятельности, настойчивости, мыслительной активности, для возможности появления у каждого чувства удовлетворенности, успеха, интереса. Кроме того, правила игры воспитывают у школьников умение управлять своим поведением, подчиняться требованиям коллектива.
Существенной стороной математической игры являются игровые действия. Они регламентируются правилами игры, способствуют познавательной активности учащихся, дают им возможность проявить свои способности, применить имеющиеся знания, умения и навыки для достижения цели игры. Учитель же, как руководитель игры, направляет ее в нужное русло, при необходимости активизирует ее ход разнообразными приемами, поддерживает интерес к игре, подбадривает отстающих.
Основой математической игры является ее содержание. Содержание заключается в усвоении, закреплении, повторении тех знаний, которые применяются при решении задач, поставленных в игре, а так же в проявлении своих способностей к математике, творческих способностей.
К оборудованию математической игры относятся различные средства наглядности, раздаточный материал, то есть все то, что необходимо при проведении игры, ее конкурсов.
Математическая игра имеет определенный результат, который является финалом игры, придает игре законченность. Он выступает, прежде всего, в форме решения поставленной задачи, в достижении поставленной перед учащимися цели игры. Полученный результат игры дает школьникам моральное и умственное удовлетворение. Для учителя же результат игры является показателем уровня достижений учащихся в усвоении знаний и их применении, наличия математических способностей, интереса к математике.
Все структурные элементы игры взаимосвязаны между собой. Отсутствие одного из них разрушает игру. Без игрового замысла и игровых действий, без организующих игру правил, математическая игра или невозможна или теряет свою специфическую форму, превращается в выполнение упражнений и заданий. [13]
Сочетание всех элементов игры и их взаимодействие повышают организованность игры, ее эффективность, приводит к желаемому результату. Такая игра способствует возникновению желания участвовать в ней, пробуждает положительное отношение к ней, повышает познавательную активность и интерес.
2.5 Организационные этапы математической игры
Для того чтобы провести математическую игру, и ее результаты были бы положительными, необходимо провести ряд последовательных действий по ее организации. К организации математической игры относят ряд этапов. Каждый этап как часть единого целого включает определенную логику действий педагога и учащихся.
Первый этап – это предварительная работа. На этом этапе происходит выбор самой игры, постановка цели, разработка программы ее проведения. Выбор игры и ее содержания в первую очередь зависит от того, для каких детей она будет проводиться, их возраст, интеллектуальное развитие, интересы, уровни общения и т.п. Содержание игры должно соответствовать поставленным целям, так же большое значение имеет время проведения игры, ее продолжительность. Одновременно с этим уточняется место и время проведения игры, готовиться необходимое оборудование. На этом этапе также происходит предложение игры детям. Предложение может быть устного и письменного характера, в него могут входить краткое и точное объяснение правил и техники действий. Главная задача предложения математической игры заключается в возбуждении интереса учащихся к ней.
Второй этап – подготовительный. В зависимости от того или иного вида игры этот этап может отличаться по времени и содержанию. Но все-таки у них есть общие черты. Во время подготовительного этапа учащиеся знакомятся с правилами игры, происходит психологический настрой на игру. Учитель организует детей. Подготовительный этап игры может проходить как непосредственно перед самой игрой, так и начаться заблаговременно до проведения самой игры. В этом случае учащиеся предупреждаются о том, какого типа задания будут в игре, какие правила у игры, что нужно подготовить (собрать команду, подготовить домашнее задание, представление и т.п.). Если игра проходит по какому-либо учебному разделу предмета математики, то школьники смогут повторить его и прийти на игру подготовленными. Благодаря данному этапу дети заранее заинтересовываются игрой и с большим удовольствием участвуют в ней, получая при этом положительные эмоции, чувство удовлетворенности, что способствует развитию у них познавательного интереса.
Третий этап – это непосредственно сама игра, воплощение программы в деятельности, реализация функций каждым участником игры. Содержание данного этапа зависит от того, какая игра проводиться.















