112487 (591117), страница 3
Текст из файла (страница 3)
Тогда точка А имеет координаты (0,0), точка В - (а,0), точка С - (0,c), точка D - (b,c).
(умение находить координаты заданных точек)
Пусть
и
острые углы в трапеции АВСD, тогда их сумма равна
. Для вычисления длины большей диагонали BD надо найти значение с. Его можно вычислить 2 способами. Первый - из прямоугольного треугольника АВС по формуле
находим
. Второй способ из прямоугольного треугольника ACD:
. Отсюда получили, что
(1)
Из равенства (1) находим отношение
: оно равно -
, так как
. Выразим
. Он равен
, исходя из этого, пользуясь зависимостью (1), получаем
.
(умение выразить недостающие координаты через уже известные величины)
Далее воспользовавшись координатной формулой расстояния между двумя точками, найдем длину BD.
(умение вычислять расстояние между точками, заданными координатами)
Она равна
.
Итак, компонентами умения применять координатный метод в конкретных ситуациях являются следующие умения:
-
переводить геометрический язык на аналитический для одного типа задач и с аналитического на геометрический для другого;
-
стоить точку по заданным координатам;
-
находить координаты заданных точек;
-
вычислять расстояние между точками, заданными координатами;
-
оптимально выбирать систему координат;
-
составлять уравнения заданных фигур;
-
видеть за уравнением конкретный геометрический образ;
-
выполнять преобразование алгебраических соотношений.
Данные умения можно отработать на примере следующих задач, формирующих координатный метод:
-
задачи на построение точки по ее координатам;
-
задачи на нахождение координат заданных точек;
-
задачи на вычисление расстояния между точками, заданными координатами;
-
задачи на оптимальный выбор системы координат;
-
задачи на составление уравнения фигуры по ее характеристическому свойству;
-
задачи на определение фигуры по ее уравнению;
-
задачи на преобразование алгебраических равенств;
Приведем примеры таких задач.
I. Построение точек на плоскости.
С координатной прямой, а затем и с координатной плоскостью учащиеся знакомятся в 5-6 классах при изучении математического материала. При этом удобно использовать мультимедийные презентации, которые позволяют в динамике излагать необходимый материал, использовать всевозможные иллюстрации и звуковые эффекты, тем самым, заинтересовывая учащихся и являясь хорошим наглядным средством. Одним из примеров является презентация «Метод координат», опирающаяся на учебник [7]. (см. приложение 1). Приведем несколько примеров задач, которые можно использовать при изучении координатной плоскости. Эти задачи могут быть использованы:
-
для оттачивания навыков построения точек по их координатам со всем классом;
-
для дополнительных заданий отстающим ученикам;
-
для развития интереса к изучаемой теме.
-
На координатной плоскости постройте точки А(7,2), B(-2,1), C(0,2).
-
Отметьте на плоскости несколько точек. Начертите произвольную систему координат и найдите в ней координаты заданных точек.
-
П
остройте фигуры по координатам их узловых точек. Указание: узловыми будем называть точки, служащие концами отрезков, образующих фигуры. Точки, координаты которых записаны подряд через запятую, соединяйте последовательно друг с другом. Если же координаты разделяются знаком «;», то соответствующие точки не следует соединять. Они нужны для изображения вспомогательных элементов.
А) Камбала (Рис. 4)
(3,7), (1,5), (2,4), (4,3),
(5,2), (6,2), (8,4), (8,-1),
(6,0), (0,-3),(2,-6),(-2,-3),
(-4,-2),(-5,-1),(-6,1),(-4,1);
(-6,1), (-6,2), (-3,5), (3,7);
(-4,-2),(-2,0),(-2,2),(-3,5);(-3,3).
Б)Найдите координаты выделенных на рисунке точек, двигаясь по часовой стрелке от самой жирной точки. (Рис. 5 и 6)
II.Задачи на выбор системы координат
Выбор системы координат имеет очень важное значение при применении метода координат.
Для примера возьмем задачу, которая рассмотрена в учебнике [2] «Середина гипотенузы прямоугольного треугольника равноудалена от его вершин».
Первым шагом при применении метода координат является такой выбор осей и системы координат, при котором алгебраические выкладки становятся более простыми. Для данной задачи удачный выбор системы координат показан на рисунке 7. Таким образом, начало координат помещаем в точку А, а оси проводим через точки В и С так, чтобы эти точки лежали на положительных лучах осей. Следовательно, В(а,0) и С(0,b). Поэтому по формуле середины отрезка D(
). Теперь
,
.
Поэтому AD=BD. А так как по определению середины отрезка BC=CD, то теорема доказана.
Можно выбрать систему координат и по-другому (рис.8, рис.9). Если выбрать оси совсем случайно, то легкую задачу можно превратить в очень трудную. Чтобы начать доказательство исходя из рисунка 10, нужно найти способ, позволяющий выразить алгебраически, что треугольник ABC имеет при вершине А прямой угол. Сделать это можно, но будет это не очень просто.
C(c,d)
Поэтому необходимо вырабатывать у учащихся, начиная с 6 класса, представления о возможности произвольного выбора системы координат. Эту работу целесообразно вести в процессе решения задач. В целях пропедевтической работы можно рекомендовать в 6 классе задачи из учебника на нахождение координат точек по рисунку, разнообразя их с помощью изменения направления осей и начала координат. (см. приложение1)
-
Длина отрезка АВ равна 5см. а)Выберите систему координат, в которой можно было бы наиболее просто определить координаты концов отрезка. б)Выберите систему координат так, чтобы координаты концов отрезка были бы: А (-2.5,0), В(2.5,0).
-
Постройте квадрат ABCD со стороной 2 см; отметьте точку М- центр квадрата. Поместите начало координат последовательно в точки A, B, C, D и выберите направление осей координат так, чтобы точка М в каждой системе координат имела координаты (1;1). За единичный примите отрезок длиной 1 см.
-
Треугольник ABC равносторонний (длина стороны равна 6 см.). Выберите систему координат так, чтобы можно проще было бы определить координаты его вершин.
III. Расстояние между точками
-
Точка М(а,с) находится от начала координат и точки А(4,0) соответственно на расстояниях 3 и 4 см. Определите координаты точки М.
-
Дан прямоугольник ABCD (АВ=2 см., ВС=4 см.). Как выбрать систему координат, чтобы его вершины имели координаты А(-1,-2), В(-1,2), С(1,2), D(l,-2)?
-
Длины сторон треугольника ABC равны 3, 4 и 5 см. Выберете систему координат и определите в ней координаты вершин треугольника ABC.
-
Вершины четырехугольника ABCD имеют следующие координаты: А(-3,1), В(3,6), С(2,2) и D(-4,3). Установите вид четырехугольника.
IV. Составление уравнения фигур
Это умение является одним из основных умений, которые необходимы при применении метода координат к решению задач.
-
Изобразите систему координат. Отметьте на оси Ох точки А и В. Запишите соотношения, которым удовлетворяют координаты точек, принадлежащих: а)отрезку АВ; б)лучу АВ; в)лучу ВА;
-
Запишите уравнение прямой, содержащей начало координат и точку А(2,5).
-
Запишите уравнение прямой, содержащей точки А(2,7)и В(1,3).
-
Изобразите на координатной плоскости произвольную прямую и найдите ее уравнение.
-
Запишите соотношения, которым удовлетворяю координаты точек прямоугольника с вершинами А(2,3), В(2,5), С(4,5), D(4,3).
-
Что представляют собой множества точек плоскости, координаты которых удовлетворяют неравенствам: а)х≤3; b)-5≤х≤0; c)x>1; d)x<-2; e)
≥2; f)
≥0? -
Какую фигуру образует множество точек, координаты которых удовлетворяют системе неравенств 2≤x≤5 и 1≤y≤3?
-
Постройте точки, симметричные точкам А(2,-3) , В(5,0), С (0,7) относительно: а) оси Ох; б) оси Оу; в)биссектрисы I и III координатных углов. Запишите эти координаты.
-
Установите, относительно какой из координатных осей симметричны точки А(1,2), В (-7,2).
-
Точки А(5,…), В(…,2) симметричны относительно оси Ох. Запишите пропущенные координаты.
-
Постройте образы точек А(1,5), В(-2,3), С(3,0) при параллельном переносе а)О(0,0)→К(3,0); 6)0(0,0)→М(2,3). Запишите их координаты.
-
С помощью какого параллельного переноса можно отобразить точку М(-3,4) в точку M1(2,4)?
-
Найдите на прямых у=-Зх+1 и у=2х+3 точки, симметричные относительно оси Ох.
-
Запишите уравнение прямой, на которую отображается прямая у=4х-3 вектором с координатами (3,4).
-
На прямых у=Зх+2 и у=-5х+5 найдите такие точки, которые находятся одна от другой на расстоянии 5 см, и принадлежат прямой, параллельной оси Ох.
2.3 Виды задач, решаемых методом координат
Применяя метод координат, можно решать задачи двух видов.
-
Пользуясь координатами можно истолковать уравнения и неравенства геометрически и таким образом применять геометрию к алгебре и анализу. Графическое изображение функции первый пример такого применения метода координат.
-
Задавая фигуры уравнениями и выражая в координатах геометрические соотношения, мы применяем алгебру к геометрии. Например, можно выразить через координаты основную геометрическую величину - расстояние между точками.
В связи с усилением роли координатного метода в изучении геометрии особенно актуальной становиться проблема его формирования. Наиболее распространенными среди планиметрических задач, решаемых координатным методом, являются задачи следующих 2 видов: 1) на обоснование зависимостей между элементами фигур, особенно между длинами этих элементов; 2) на нахождение множества точек, удовлетворяющих определенным свойствам.
Примером задач первого вида может служить следующая:
«В треугольнике ABC, AB=c, AC=b, BC=a, BD - медиана.
Доказать, что
»
Задача: «Найти множество точек, для каждой из которых разность квадратов расстояний от двух данных точек есть величина постоянная» - является примером задач второго вида.
Решения этих задач были разобраны выше.
Несмотря на недостатки метода координат такие как наличие большого количества дополнительных формул, требующих запоминания, и отсутствие предпосылок развития творческих способностей учащихся, некоторые виды задач трудно решить без применения данного метода. Поэтому изучение метода координат необходимо, однако более детальное знакомство с этим методом целесообразно проводить на факультативных занятиях. Далее приведем ряд задач для факультативов.
П
ример 1. Докажите, что сумма квадратов расстояний от точки, взятой на диаметре окружности, до концов любой из параллельных ему хорд постоянна.
Решение:
Введем прямоугольную систему координат с началом в центре окружности. Пусть хорда МР параллельна оси Ох, а точка А принадлежит диаметру (рис. 11). Обозначим расстояние ОА через а, а расстояние от точки Р до оси Ох через b. Тогда точка А имеет координаты (а, 0). Точки Р и М принадлежат окружности с центром в начале координат и радиусом равным 1, следовательно их координаты удовлетворяют уравнению данной окружности
. Используя это уравнение находим координаты точек Р(
) и М(
). Необходимо доказать, что АМ2+АР2 не зависит от переменной b. Найдем АМ2 и АР2 используя формулу нахождения расстояния между двумя точками по их координатам:
. Они соответственно равны
и
, а их сумма после приведения подобных равна 2а2+2. Это число не зависит от переменной b, что и требовалось доказать.
Пример 2. Доказать, что сумма квадратов длин сторон четырехугольника равна сумме квадратов длин его диагоналей, сложенной с учетверенным квадратом расстояния между серединами диагоналей. (Теорема Эйлера)
Решение: Введем прямоугольную систему координат как показано на рисунке 12.
П
усть точки А, В, С и D имеют координаты (0,0), (d,0), (c,d) и (0,d) соответственно. Следовательно, координаты точек L и P есть (
) и (
). Найдем квадраты длин отрезков, с помощью формулы нахождения расстояния между точками по их координатам.
AD2=
; BC2=
; DC2=
; AB2=
;
AC2=
; BD2=
; LP2=
.
Запишем выражение, которое необходимо доказать, используя найденные нами значения.
AD2+BC2+DC2+AB2=AC2+BD2+4LP2
+
+
+
=
+
+4
Раскроем скобки, приведем подобные и получим верное равенство 0=0. Значит, сумма квадратов длин сторон четырехугольника равна сумме квадратов длин его диагоналей, сложенной с учетверенным квадратом расстояния между серединами диагоналей.
Пример 3. Диаметры AB и CD окружности перпендикулярны. Хорда ЕА пересекает диаметр СD в точке К, хорда ЕС пересекает диаметр АВ в точке L. Докажите, что если СК:KD так же как 2:1, то AL:LB так же как 3:1.
Решение: Введем прямоугольную систему координат, направив оси по данным диаметрам AB и CD (рис. 13).
Радиус окружности будем считать равным 1. Тогда точки А, В, С, D будут иметь координаты (-1,0), (1,0), (0,-1), (0,1) соответственно. Так как СК:KD=2:1, то точка К имеет координаты (0,
). Найдем координаты точки Е как точки пересечения прямой АК, имеющей уравнение
и окружности, заданной уравнением
. Получаем, что точка Е имеет координаты (
). Точка L – это точка пересечения прямых СЕ и оси абсцисс, значит ординаты точки L равна 0.
Найдем абсциссу точки L. Прямая СЕ задана уравнением
. Она пересекает ось Ох в точке (
,0). Отсюда координаты точки L(
,0). Найдем отношение AL:LB. Оно равно трем, что и требовалось доказать.
Задачи
-
Доказать, что если в треугольнике две медианы конгруэнтны, то треугольник равнобедренный.
-
Найти множество таких точек Р, что отношение расстояний от каждой из них до двух данных точек равно а.
-
Докажите, что уравнение окружности с центром в точке С (а,с) и радиусом r имеет вид: (х-а)2+(у-с)2=r2
-
Найти угол между прямыми Зх-4у+6=0 и 12х+5у+8=0
-
Определите расстояние от точки А(-3,4) до прямой у=х+2.
-
Вычислите площадь треугольника, вершины которого имеют следующие координаты: А (0,-2), В(6,2) и С(2,4) .
-
На прямой с даны три точки А, В, С так, что точка В лежит между точками А и С. В одной полуплоскости с границей а построены равносторонние треугольники АМВ и ВРС. Доказать, что середина отрезка РА, середина отрезка МС и точка В являются вершинами равностороннего треугольника.
-
Доказать, что для любой точки Р лежащей между вершинами В и треугольника ABC, справедливо равенство :
АВ2*РС+АС*ВР-АР2*ВС=ВС*ВР*РС.
-
Дан прямоугольник. Докажите, что сумма квадратов расстояний от произвольной точки, принадлежащей плоскости этого прямоугольника до его вершин, в два раза больше суммы квадратов расстояний от этой точки до сторон прямоугольника.
-
Доказать, что если через некоторую точку М провести прямую, пересекающую окружность в точках А и В, то произведение МА*МВ постоянно и не зависит от положения прямой.
-
Дан прямоугольник ABCD. Найти множество точек М, для которых MA2+MC2=MB2+MD2. (ответ: множество точек М есть плоскость)
-
Дан прямоугольник ABCD. Найти множество точек М, для которых MA+MC=MB+MD. (Ответ: пара прямых)
-
Дан прямоугольный треугольник ABC (C=90°) . Найти множество точек Р, для которых 2РС2=РА2+РВ2. (ответ: множество точек Р есть прямая, содержащая середину М гипотенузы АВ и перпендикулярная к медиане СМ).
2. 4 Опытное преподавание
Опытное преподавание проводилось в 9 классе средней общеобразовательной школы №51. Перед его проведением была изучена математическая и методическая литература и разработана методика проведения факультатива. Было проведено 2 занятия. В данном классе изучение геометрии ведется по учебнику [2], поэтому в качестве основного теоретического и практического источника я выбрала данный методический комплект.
I. Занятия проводились по теме «Простейшие задачи в координатах», до ознакомления с которыми учащиеся изучали тему «Векторы», познакомились с понятием «координаты вектора», а также узнали формулу середины отрезка.
1 занятие: «Простейшие задачи в координатах»
Образовательная цель урока – рассмотреть задачи о вычислении длины вектора по его координатам и по координатам его начала и конца; показать, как они используются при решении других задач.
Содержание урока:
-
Вначале урока был проведен устный счет для проверки усвоения материала, разобранного на прошлом уроке, а также для проведения пропедевтической работы по повторению тех понятий и фактов, которые будут использованы при объяснении нового материала.
Устный счет:
-
Координаты точек А(-2, 3) и В(2, -4). Найдите координаты векторов
и
. -
Координаты точек М(5,-8) и Р(-3, 4). Найдите координаты точки О (О – середина отрезка МР).
-
СР – диагональ окружности; С(-2, -1), Р(5, 7). Найдите координаты центра окружности – точки Е.
-
ABCD – прямоугольник, АD=7, АВ=5. Найдите АС.
-
Новый материал:
-
Вычисление длины вектора по его координатам.
В
O
ывод формулы опирается на теорему Пифагора и на то, что расстояние между двумя точками оси координат находится по формулам
(для точек
;
оси х) и
(для точек
;
оси у). Покажем, что длина вектора
равна
. Данная формула доказывается только для случая, когда х≠0 и у≠0, в достоверности других случаев учащимся предоставляется убедиться самостоятельно. Для доказательства задаем координатную плоскость и рассматриваем вектор
с началом в начале координат (по теореме: от любой точки можно отложить вектор, равный данному и притом единственный). Используя формулу для нахождения координат вектора по координатам его начала и конца, можем найти координаты точки А. Далее с помощью теоремы Пифагора находим длину отрезка ОА=
.
следовательно, их длины раны, т.о.
. Далее показывается применение данной формулы.
-
Расстояние между двумя точками.
Нахождение данной формулы опирается на использование предыдущей. Пусть имеются точки М1(х1,у1)и М2(х2,у2), необходимо найти расстояние между этими точками. Рассмотрим вектор М1М2. Его координаты равны
. Находим длину вектора по его координатам:
, а расстояние между М1 и М2 это длина вектора
. После выведения данной формулы можно записать формулу
и показать, что они эквивалентны.
-
Закрепление: для закрепления используется ряд задач на применение данных формул.
-
Найдите длины векторов: а)
; b)
[2: № 938] -
Найдите медиану АМ треугольника АВС, вершины которого имеют координаты: А(0,1), В(1, -4), С(5,2). [2: № 942]
-
Вершина А параллелограмма ОАСВ лежит на положительной полуоси Ох, вершина В имеет координаты (b, c), а ОА=а. Найдите а)координаты вершины С; b)сторону АС и диагональ СО. [2: № 944].
-
Домашнее задание № 939, 941 [2]
-
2 занятие: «Простейшие задачи в координатах». (урок – закрепление)
Общеобразовательная цель урока: показать, как «простейшие задачи» используются при решении более сложных и проверить усвоение знаний, полученных на прошлом уроке.
Содержание урока:
-
В начале урока был проведен устный счет для проверки усвоения материала, разобранного на прошлом уроке.
Устный счет: записать координаты
●Середины отрезка ●К оординаты вектора
y =
x =
Рис. 16
Рис. 15
-
Длины вектора
-
Расстояние между точками М и N.
-
Решение задач.
-
Докажите, что треугольник АВС равнобедренный, и найдите его площадь, если А(0,1), В(1,-4), С(5,2).
-
Докажите, что четырехугольник MNPQ является параллелограммом, и найдите его диагонали, если N(6,1), P(7,4), Q(2,4), М(1,1). [2: № 950(а)]
-
Самостоятельная работа.
| I. Вариант |
| 1. Найдите координаты и длину вектора |
| 2. Даны координаты вершин треугольника АВС А(-6,1), В(2,4), С(2,-2). Докажите, что треугольник АВС равнобедренный и найдите высоту проведенную из вершины А. |
| Дополнительно для обоих вариантов: Даны координаты вершин треугольника АВС А(-4,3), В(2,7), С(8,-2). Доказать, что треугольник прямоугольный. |
| II. Вариант |
| 1. Найдите координаты и длину вектора |
| 2. Дано А(-6,1), В(0,5), С(-6,4), Р(0,-8). Докажите, что АВСР прямоугольник и найдите координату точки пересечения его диагоналей. |
-
Домашнее задание №945, 948(а)
II. Факультатив.
Для проведения факультатива предлагается ряд более сложных нестандартных задач, при решении которых используется метод координат.
Задача 1. Два предприятия А и В производят продукцию с одной и той же ценой m за одно изделие. Однако автопарк, обслуживающий предприятие А, оснащен более современными и более мощными грузовыми автомобилями. В результате транспортные расходы на перевозку одного изделия составляют для предприятия А 10 р. на 1 км, а для предприятия В 20 р. на 1 км. Расстояние между предприятиями 300 км. Как территориально должен быть расположен рынок сбыта между двумя предприятиями для того, чтобы расходы потребителей при покупке изделий были минимальными.
Решение:
Д
ля решения данной задачи воспользуемся методом координат. Систему координат выберем так, чтобы ось Ох проходила через пункты А и В, а ось Оу через точку А. Пусть Р произвольная точка, s1 и s2 расстояния от точки до предприятий А и В (рис.17). Тогда А(0, 0), В(300, 0), Р(х, у).
При доставке груза из пункта А расходы равны m+10s1. При доставке груза из пункта В расходы равны m+20s2. Если для пункта Р выгоднее доставлять груз с предприятия А, то m+10s1< m+20s2, откуда s1<2s2, в обратном случае получим s1>2s2.
Таким образом, границей области для каждой точки, до которой расходы на перевозку груза из пунктов А и В равны, будет множество точек плоскости, удовлетворяющих уравнению
s1=2s2 (1)
Выразим s1 и 2s2 через координаты:
,
.
Имея в виду (1), получим
.
Это и есть уравнение окружности. Следовательно, для всех пунктов, попадающих во внутреннюю область круга, выгоднее привозить груз из пункта В, а для всех пунктов, попадающих во внешнюю часть круга, - из пункта А.
Задача 2. На плоскости даны точки А и В; найти геометрическое место точек М, удаленных от А в двое больше, чем от В.
Решение:
В
ыберем систему координат на плоскости так, чтобы начало координат попало в точку А, а положительная полуось абсцисс пошла по АВ. За единицу масштаба возьмем отрезок АВ. Точка А будет иметь координаты (0,0), точка В координаты (1,0). Координаты точки М обозначим через (х,у). Условие
записывается в координатах так:
.
Мы получили уравнение искомого геометрического места точек. Чтобы понять, какое множество описывается этим уравнением, мы преобразуем его так, чтобы оно приняло знакомый нам вид. Возведя обе засти в квадрат, раскрывая скобки и приводя подобные члены, получаем равенство: Зх2-8х+4+Зу2=0.
Это равенство можно переписать так:
или так:
. Это уравнение окружности с центром в точке (
,0) и радиусом, равным
. Это значит, что наше геометрическое место точек является окружностью.
Задача 3.Дан треугольник ABC; найти центр окружности, описанной около этого треугольника.
Решение:
Примем точку А за начало координат, ось абсцисс направим от А к В. Тогда точка В будет иметь координаты (с,0), где с - длинна отрезка АВ. Пусть точка С имеет координаты (q,h), а центр искомой окружности - (а,b). Радиус этой окружности обозначим через R. Запишем в координатах принадлежность точек А(0,0), В(с,0) и C(q,h) искомой окружности:
a2+b2=R2,
(c-a)2+b2=R2,
(q-a)2+(h-b)2=R2.
Каждое из этих условий выражает тот факт, что расстояние точек А(0,0), В(с,0), C(q,h) от центра окружности (а,b) равно радиусу. Эти условия легко получить, если записать уравнение искомой окружности (окружности с центром (а,b) и радиусом R), т. е. (x-a)2+(y-b)2=R2, а затем в это уравнение вместо х и у подставить координаты точек А, В и С, лежащих на этой окружности. Эта система трех уравнений с тремя неизвестными легко решается, и мы получаем:
,
,
.
Задача решена, так как мы нашли координаты центра и радиус. Причем следует заметить, что мы при решении задачи не прибегали к построению чертежа.
Домашнее задание:
-
Лестница, стоящая на гладком полу у стены соскальзывает вниз. По какой линии движется котенок, сидящий на середине лестницы?
-
В квадрат вписана окружность. Доказать, что сумма квадратов расстояний любой точки окружности до сторон квадрата постоянна.
Краткий анализ проведенных занятий: Учащиеся на уроках активно принимали участие, особенно на первом при выводе формул, так как материал не сложный и использует факты и понятия, которые были изучены не так давно и повторены на устном счете. Также на 1 уроке удалось прорешать все запланированные задачи на закрепление, особую трудность вызвала задача № 3, в которой учащиеся долго не могли сделать чертеж и путались в формулах нахождения длины и координат вектора. Проведенная на следующем уроке самостоятельная работа показала, что практически все ученики усвоили материал (с работой не справились 2 человека из 26 учеников этого класса). Наибольшее количество ошибок было сделано в задаче № 2, при использовании формулы нахождения расстояния между 2 точками. Таким образом, можно предположить, что тема «Простейшие задачи в координатах» была успешно усвоена большинством учеников данного класса.
Заключение
Достаточно простой в применении, метод координат является необходимой составляющей решения задач различного уровня. Использование данного метода, позволяет учащимся значительно упростить и сократить процесс решения задач, что помогает им при дальнейшем изучении, как школьного курса математики, так и при изучении математики в высших учебных заведениях.
В данной дипломной работе:
-
проанализировано несколько действующих школьных учебников относительно темы «Метод координат»;
-
описан сам метод координат, виды и этапы решения задач методом координат;
-
выделены основные умения, необходимые для овладения данным методом и приведен ряд задач, формирующих их.
Также было проведено опытное преподавание, которое подтвердило гипотезу о том, что изучение метода координат в школьном курсе геометрии необходимо. Оно будет более эффективно, если в 5-6 классе проведена пропедевтическая работа по формированию основных умений и навыков, в системном курсе планиметрии учащиеся знакомятся со структурой данного метода, и используется продуманная система задач для формирования отдельных компонентов метода.
Библиографический список
-
Автономова, Т. В. Основные понятия и методы школьного курса геометрии: Книга для учителя [Текст]/ Б. И. Аргунов – М. Просвещение, 1988г. – 127с.
-
Атанасян, Л. С. Геометрия для 7-9 классов средней школы [Текст] / В. Ф. Бутузов, С. Д. Кадомцев, Э. Г. Позняк, И. И. Юдина – М. Просвещение, 1992г.- 335с.
-
Виленкин, Н. Я. Математика: Учеб. для 5 кл. сред. шк. [Текст]/ А. С. Чесноков, С. И Шварцбурд.- М. Просвещение, 1989г. – 304с.
-
Виленкин, Н. Я. Математика: Учеб. для 6 кл. общеобразоват. учреждений [Текст] / В. И. Жохов, А. С. Чесноков, С. И Шварцбурд. – М. Мнемозина, 2001г. – 304с.
-
Гельфанд, И. М. Метод координат [Текст]- М. Наука, 1973г. -87с.
-
Дорофеев, Г. В. Математика: Учеб. для 5 кл. общеобразоват. учреждений [Текст] / И. Ф. Шарыгин, С. Б. Суворова – М. Просвещение, 2000г. – 368с.
-
Дорофеев, Г. В. Математика: Учеб. для 6 кл. общеобразоват. учеб. заведений [Текст] / И. Ф. Шарыгин, С. Б. Суворова – М. Дрофа, 1998г. – 416с.
-
Изучение координат в III – IV кл. / Л. Г. Петерсон // Математика в школе - 1983г.- №4
-
Индивидуальные карточки по геометрии для 7-9 кл. / Т. М. Мищенко // Математика в школе – 2001г. - № 8
-
Итоги работы в 7 кл. по учебнику Шарыгина И. Ф. 7-9 / О.В. Бощенко // Математика в школе - 2002г. №5
-
К изучению перемещений на координатной плоскости / Г.Б. Лудина // Математика в школе – 1983г.- №2
-
К началу обучения геометрии 1-7 кл. // Математика в школе 1983г. - №6
-
Лускина М. Г. Факультативные занятия по математике в школе: Методические рекомендации [Текст]/ В. И. Зубарева – Киров ВГПУ, 1995г.
-
Лященко, Е. И. Лабораторные и практические работы по методике преподавания математики: Учеб. пособие для студентов физ.-мат. спец. пед. ин-тов [Текст] / К. В. Зобкова, Т. Ф. Кириченко – М. Просвещение, 1988г. – 233с.
-
Метод координат / А. Савин // Квант -1977г. - №9
-
Мишин, В. И. Методика преподавания математики в средней школе: Частная методика: Учеб пособие для студентов пед. ин-тов по физ.-мат. спец. [Текст] / А. Я. Блох, В. А. Гусев, Г. В. Дорофеев – М. Просвещение 1987г. – 416с.
-
Никольская, И. Л. Факультативный курс по математике: Учеб. пособие для 7-9 кл. ср. шк. [Текст] – М. Просвещение, 1991г. – 383с.
-
Новые компьютерные технологии. Координатная плоскость // Математика - Приложение к газ. «Первое сентября» – 2004г. №29
-
Нужна ли школе XXI века геометрия /И. Шарыгин // Математика - Приложение к газ. «1 сентября» – 2004г. №12
-
О конкретном учебнике геометрии для 7-9 кл. / Л.С. Атанасян // Математика в школе – 1989г. - №1
-
Обсуждение одного учебника / И.Е Феоктистов // Математика в школе -2001г. №5
-
Погорелов, А. В. Геометрия для 7-11 классов средней школы - М: Просвещение, 1990г. - 384с.
-
Понтрягин, Л. С. Знакомство с высшей математикой. Метод координат [Текст] – М. Наука, 1987г. – 128с.
-
Программа по математике для средней школы - М. Просвещение, 1998г. -205с.
-
Саранцев, Г. И. Упражнения в обучении математике [Текст] – М. Просвещение, 1995г. – 240с.
-
Сикорский, К. П. Дополнительные главы по курсу математики. Учебное пособие по факультативному курсу для учащихся 7-8 классов [Текст] – М. Просвещение, 1974г.- 315с.
-
Упражнения по теме «Координатная плоскость» / О.А. Леонова // Математика в школе – 2001г. - №10
-
Шарыгин, И. Ф. Геометрия 7-9 кл.: Учеб для общеоразоват. учеб. заведений [Текст] – М. Дрофа, 2000г. -368с.
остройте фигуры по координатам их узловых точек. Указание: узловыми будем называть точки, служащие концами отрезков, образующих фигуры. Точки, координаты которых записаны подряд через запятую, соединяйте последовательно друг с другом. Если же координаты разделяются знаком «;», то соответствующие точки не следует соединять. Они нужны для изображения вспомогательных элементов.
≥2; f)
и
.
; b)
[2: № 938]















