107495 (590955), страница 10
Текст из файла (страница 10)
В случае неравномерного отрыва прочность соединения в несколько раз
меньше, чем при равномерном отрыве. При сжатии прочность клея больше в 10—100 раз, чем при растяжении.
Прочность склейки существенно зависит от температуры, причем большое влияние оказывает вид клея и характер напряженного состояния. Коэффициент Пуассона клея μ = 0,3; модуль сдвига G = О,38Е; модуль упругости Е = 200 - 400 кгс/мм2; удлинение отвержденной пленки около 3,5%.
Теплостойкость клеев различна. Фенолокаучуковые и эпоксидные клеи работают длительно (до 30000 ч) при температуре 150°С и выше. Полиароматические и элементоорганические клеи выдерживают температуру 200 —400сС в течение 2000 ч; карборансодержащие клеи — до 600°С в течение сотен часов.
Клеящие материалы со временем «стареют». В условиях эксплуатации и при хранении склеенных изделий наступает охрупчивание клея, которое протекает тем быстрее, чем выше температура. Увеличение жесткости клея вызывает возрастание концентрации напряжений, вследствие чего прочность падает. Наиболее высокой термостабильностью обладают полиимидные и полибензимидазольные клеи. Некоторые клеи при действии переменных температур теряют 8 — 20% прочности.
Выносливость — число циклов до разрушения клеевого шва — зависит от вида клея. В среднем при несимметричном цикле нагрузки число циклов нагружения 106 —107.
Таблица 4
Физико-механические свойства конструкционных смоляных клеев
Тип клея | Предел прочности , кгс/мм2 | Теплостойкость, С | Водостойкость (сравнительная) | Температура склеивания, °С | ||
при сдвиге | при равномерном отрыве | при неравномерном отрыве | ||||
Фенолоформальдегидный | 1,3-1,5 | - | __ | 60-100 | Хорошая | 20 или 50-60 |
Фенолкаучуковый | 1,4-2,5 | 1.7-2,0 | 0,30-0,50 | 200-350 | Отличная | 165-205 |
Фенолополивинилацеталевые | 1,7-1,8 | 3,6-6 | 0,08-0,12 | 200-350 | Хорошая | 180 |
Фенолополивинил- бутиральный | 2,2 | 3,2-3,5 | 0,30 | 60-80 | Удовлетворительная | 120-140 |
Фенолокремнийорганические | 1,2-1,7 | 2,8-3,0 | - | 250-600 | Хорошая | 180-200 |
Эпоксидный | 1-3 | 1-6 | 0,1-0,15 | 60-350 | Удовлетворительная | 20 или 80-210 |
Полиуретановый . | 1,1-2,0 | 2,2 – 3,5 | 0,25 – 0,30 | 60-100 | Хорошая | 18-25 |
Полиуретановые карборансодержащие | 1,0-2,0 | - | _ | 350-1000 | » | или 105 150 |
Кремнийорганический | 0,90-1,75 | 1,5-2,2 | 0,08-0,20 | 350-1200 | Удовлетворительная | 180-270 |
Карбамидный | 1,3 | — | — | 60 | Низкая | 15-30 |
Полибензимидазольный | 1,5 — 3,0 | _ | _ | 350-540 | Отличная | 150-400 |
Полиимидный | 1,5-3,0 | — | — | 300-375 | » | 180-260 |
Лакокрасочные материалы
1. Общие сведения, состав и классификация лакокрасочных материалов
Лакокрасочные материалы принадлежат к группе пленкообразующих материалов После нанесения в жидком состоянии на окрашиваемые поверхности они образуют пленки. Высохшие пленки называются покрытиями. Лакокрасочные материалы предназначены для защиты металлов от коррозии, а неметаллических материалов (древесины, пластмасс и т.д.) -от увлажнения и загнивания; они сообщают поверхности специальные свойства (электроизоляционные, теплозащитные и другие) и придают изделиям декоративный внешний вид.
Защита изделий от влияния внешней среды лакокрасочными покрытиями является наиболее доступной и широко применяется в машиностроении С помощью защитных покрытий срок эксплуатации аппаратуры, оборудования различных металлоконструкций увеличивается в несколько раз. К лакокрасочным материалам предъявляются определенные требования- высокая адгезия к защищаемым поверхностям, теплостойкость и химическая устойчивость, водонепроницаемость, светостойкость, гладкость твердость и эластичность пленки, хорошие защитные свойства.
Состав и классификация лакокрасочных материалов. Компонентами лакокрасочных материалов являются пленкообразующие вещества; смолы для увеличения адгезии, придания пленке твердости и блеска; растворители (скипидар, спирты, ацетон) и разбавители (бензол) для растворения пленкообразующего и других компонентов; пластификаторы (дибутилфталат и др) сохраняющие эластичность покрытия, снижающие его воспламеняемость и улучшающие морозостойкость; отвердители термореактивных пленкообразующих (амины); пигменты и красители - придающие определенный цвет и обладающие защитными свойствами; наполнители (тальк, каолин) - для повышения вязкости материала и снижения блеска покрытия; специальные добавки для тропикостойкости, стабилизации свойств
В качестве пленкообразующих веществ применяют в основном синтетические смолы, эфиры целлюлозы, реже высыхающие растительные масла.
По составу лакокрасочные материалы подразделяют на лаки, эмали, грунты шпатлевки; по пленкообразующему веществу они могут быть смоляными, эфироцеллюлозными (нитроцеллюлозные и этилцеллюлозные) и маслосодержащими (битумные, канифольные).
Лаки являются растворами пленкообразующих веществ в растворителях иногда с добавками пластификаторов, ускорителей, стабилизаторов (в составе лака обязательно присутствует смола). Лаки предназначены для защиты поверхности изделия от воздействия внешней среды.
Эмали состоят из лака и пигмента. Для получения не глянцевых, а матовых покрытий в эмали вводят наполнитель. Пигменты придают эмали цвет и некоторые специфические свойства, например белые пигменты (ZnO, TiO2) — атмосферостойкость и водоупорность; алюминиевая пудра — стойкость к действию влаги и ультрафиолетовых лучей; сажа — токопроводимость и т. д.
Грунты защищают металл от коррозии и увеличивают адгезию последующих слоев. В состав грунта входят лак и пигмент, обладающий защитными свойствами. В зависимости от вида пигмента грунты подразделяют на следующие группы: содержащие соли хромовой кислоты, цинковый и стронциевый крон (образующие окисные пленки на металле); содержащие свинцовый или железный сурик (пассивирующие грунты); содержащие цинковую пыль (протекторные грунты) и инертные пигменты (соединения титана и т. д.), создающие изолирующие покрытия.
Хроматные грунты применяют для защиты магниевых и алюминиевых сплавов. Свинцовый сурик образует на поверхности металла гидрат закиси железа. Эти грунты применимы для защиты стальных деталей.
Защитное действие цинка основано па его более электроотрицательном потенциале по отношению к железу. Эти грунты применяют для защиты стальных деталей, работающих во влажных условиях.
Для защиты стальных деталей применяют также фосфатирующие грунты. Такой грунт реагирует с поверхностью стальных деталей и образует на стали фосфатно-хроматную пленку сложного состава.
Шпатлевки предназначены для выравнивания неровностей на поверхности изделий перед окраской. В состав шпатлевок входят лак, пигмент и наполнитель. Шпатлевки наносят на предварительно загрунтованную поверхность.
Для надежной защиты поверхности изделий в большинстве случаев применяют многослойное покрытие, состоящее из слоев разного назначения, называемое системой покрытия.
Непосредственно на деталь наносится грунт, затем шпатлевка, далее следует эмаль и покровный лак. Число слоев обычно составляет 2 — 6, а иногда и 14.
Смоляные термопластичные лакокрасочные материалы. Из термопластичных смоляных материалов получили широкое распространение перхлорвиниловые и акриловые. Перхлорвиниловые эмали (ХВ, ХС) применяют для окраски металлов, древесины, бетона. Покрытия негорючи, водоустойчивы, химически стойки, могут работать в контакте с минеральным маслом и топливом, не поддаются действию тропических условий, имеют хорошие электроизоляционные свойства. Недостатки покрытий: невысокая адгезия к металлам, отсутствие глянца, низкая теплостойкость (60 — 90°С), неприятный запах.
Материалы на основе акриловых смол термопластичны, но более теплостойки и дают покрытия эластичные, стойкие к ударным нагрузкам, с хорошей адгезией к металлам. Акриловые эмали (АК и АС) могут работать в условиях 98-100%-ной влажности при температуре 55-60°С. При нанесении на эпоксидный грунт покрытие сохраняет защитные свойства в течение 3 — 6 лет.
Покрытия на основе термореактивных смол. Алкидные материалы вырабатывают на основе глифталевой (ГФ) и пентафталевой (ПФ) смол, часто модифицированных растительными маслами. Покрытия обладают высокой твердостью, прочностью, удовлетворительной адгезией к различным материалам. При введении алюминиевой пудры покрытия выдерживает длительно температуру 120°С и кратковременно температуру до 300°С. К недостаткам алкидных покрытий, относится склонность к старению, недостаточная устойчивость к условиям тропического климата и щелочным средам.
Эпоксидные лакокрасочные материалы на основе эпоксидных смол и их модификаций с различными отвердителями дают покрытия ЭП, обладающие хорошей адгезией к металлам и неметаллическим материалам, значительной твердостью, химической стойкостью к различным средам, в том числе к щелочным и, высокими электроизоляционными свойствами. Покрытия при сушке не дают усадки и стойки к колебаниям температуры.
Полиэфирным покрытиям присуща большая твердость, сильный блеск, удовлетворительная, прочность на истирание. Однако они плохо сопротивляются ударным нагрузкам и малоэластичны; используются главным образом при окраске деревянных (и бетонных) поверхностей, адгезия полиэфирных лаков к металлам невысокая.
Полиуретановые лаки, эмали, грунты имеют очень хорошую адгезию к различным материалам, хорошо сопротивляются истиранию, эластичны, атмосферостойкие, газонепроницаемы, могут работать в контакте с водой, маслами, бензином и растворителями, являются хорошими диэлектриками. Недостатком этих материалов, ограничивающих их применение, является токсичность.
Наиболее теплостойки лакокрасочные материалы на основе кремнийорганических полимеров (КО). Покрытия стойки к влаге, окислению, озону, солнечному свету и радиации, химически инертны, хорошие диэлектрики. Однако они имеют невысокую адгезию к различным материалам и требуют горячей сушки (200°С). Кремнийорганические лаки и эмали используют в основном в качестве электроизоляционных материалов. Модифицированные кремнийорганические лаки и эмали защищают металлические поверхности от длительного воздействия высоких температур.
Полиимидные покрытия теплостойки, выдерживают тепловые удары от - 196 до + 340°С. Покрытия прочные, устойчивы к воздействию растворителей и кислот, стойки к радиации и обладают диэлектрическими свойствами. Получение этих покрытий требует высокой температуры и тщательного соблюдения технологии.
2. Сравнительные свойства лакокрасочных покрытий
По условиям эксплуатации лакокрасочные покрытия подразделяют на стойкие внутри помещения; атмосферостойкие; химически стойкие; водостойкие; термостойкие; масло- и бензостойкие и электроизоляционные. Термостойкость (в°С) различных лакокрасочных покрытий приведена ниже:
Нитроцеллюлозные (НЦ) До 80,
Перхлорвиниловые (ХВ) 80 — 90'
Эпоксидные (ЭП) 150-200
Алкидные (ГФ, ПФ) - 150-300