63927 (589066), страница 2

Файл №589066 63927 (Устройства генерирования и канализации субмиллиметровых волн) 2 страница63927 (589066) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Природа возникновения отрицательного дифференциального сопротивления в диоде из арсенида галлия, работающего в режиме ОНПЗ, та же, что и для режима, открытого Ганном.

В диоде Ганна отрицательная проводимость существует только в узкой области (домене) арсенида галлия с повышенной напряженностью поля, который дрейфует от отрицательного к положительному электроду. Область сильного поля разрушает большую часть отрицательной проводимости, и энергию в нагрузку отдает только часть электронов объема полупроводника. Частота в генераторе Ганна определяется длиной образца.

Режим ОНПЗ не связан с эффектом времени пролета, и частота генератора зависит в первую очередь от частоты настройки внешнего резонатора. Имеется возможность увеличить размеры прибора. При этом почти весь объем материала диода будет обладать отрицательной проводимостью. Вследствие этого мощность генераторов на диодах в режиме ОНПЗ увеличится на 4 - 6 порядков. Способ ограничения накопления пространственного заряда (режим ОНПЗ) основан на следующих явлениях.

Нарастание и спад (рассасывание) пространственного заряда происходят за конечное время, которое обратно пропорционально степени легирования материала полупроводника или концентрации носителей. Время нарастания пространственного заряда при величине поля, превышающей критический уровень возникновения отрицательной проводимости 3000 В/см, значительно больше, чем время спада (рассасывания), которое происходит, когда напряженность поля становится ниже критической. Таким образом, изменяя напряженность поля в диоде до уровня ниже критического на время, составляющее малую часть периода колебаний, можно осуществить рассасывание пространственного заряда, накопленного во время работы при напряженности, обеспечивающей появление отрицательного сопротивления.

Арсенидогаллиевый диод работает в режиме ОНПЗ, если выполняется условие

2*1014 2*1015 шс/см3 (1.1)

Следовательно, необходимо обеспечить весьма узкий интервал допустимых уровней концентрации примесей в материале диода.

Вторым условием установления режима ОНПЗ является высокий импеданс внешних по отношению к диоду резонансных цепей, обеспечивающих получение больших амплитуд колебаний на диоде. При этом необходимо, чтобы напряженность поля, приложенного к диоду, в 3 - 4 раза превышала значение напряженности поля, которому соответствует эффект Ганна. Достаточно высокие значения добротности могут быть получены установлением слабой связи резонатора с нагрузкой в момент возникновения колебаний; после этого нагрузку резонатора, выходную мощность и к. п. д. можно заметно увеличить. Отрезок линии передачи между резонатором и нагрузкой может обеспечить задержку момента нагружения резонатора.

Поскольку рабочая частота генератора в режиме ОНПЗ не зависит от толщины образца, можно увеличить длину и объем образца в несколько раз. При этом возрастает и приложенное напряжение. Так как мощность пропорциональна квадрату приложенного напряжения, то появляется возможность значительного повышения выходной мощности. Диод, работающий в режиме ОНПЗ, может быть сконструирован для работы при любом напряжении от 25 до 500 В.

Увеличению выходной мощности диодов с ОНПЗ препятствуют в основном трудности обеспечения хорошего теплоотвода и поддержания постоянной напряженности электрического поля по всей длине диода.

Кроме задач, связанных с разработкой самих диодов, стоят также задачи создания специальных конструкций генераторов, в особенности для субмиллиметровых волн, где найдут применение открытые резонаторы.

Примером тому может послужить генератор субмиллиметрового диапазона, в котором используются объемные эффекты в арсениде галлия. Основой генератора служит пластина арсенида галлия длиной 3 мм, шириной 1 мм и толщиной 0,5 мм с концентрацией носителей 1,2*1016 см-3. На концах пластины создаются оловянные омические контакты. На одной стороне пластины в середине ее вырезана канавка шириной 1 мм и глубиной 0,15 мм. На дне канавки нанесена пленка титаната бария, на которую напылен слой проводника. С другой стороны пластины нанесены пленки из титаната бария, на которых напылен слой проводящего материала. Емкостный электрод в канавке соединен с одним из омических контактов.

К крайним выходным электродам на другой стороне пластины подсоединен отрезок замкнутого накоротко коаксиального кабеля. При подаче на контакты импульсов длительностью 60 нсек с амплитудой 80—100 В возникали колебания, частота которых зависела от длины отрезка кабеля и изменялась в больших пределах. В частности, наблюдались колебания с частотой 380 Ггц. По мнению разработчиков, этот эффект не связан с режимом ОНПЗ. Предполагается, что колебания вызывает слой нейтрализуемого объемного заряда. В момент приложения напряжения к омическим контактам начинает образовываться и распространяться объемный заряд. Однако развитию этого процесса препятствует сильное поле, создаваемое управляющим электродом, что обеспечивает отрицательное сопротивление всего объема материала.

2. Резонансные системы субмиллиметрового диапазона

Резонаторы являются важнейшими элементами целого ряда генераторных и измерительных устройств миллиметрового и субмиллиметрового диапазонов. В длинноволновой части миллиметрового диапазона в качестве резонансных систем еще используются обычные объемные резонаторы. Однако по мере укорочения рабочей длины волны размеры объемных резонаторов, в которых может существовать один вид колебаний, существенно уменьшаются. Это вызывает снижение добротности вследствие возрастания отношения площади поверхности стенок резонатора к его объему. Кроме того, малые линейные размеры налагают очень жесткие требования на точность изготовления резонатора, которая практически не может быть достигнута.

Особенности резонансных систем субмиллиметрового диапазона

Повышение добротности резонатора путем увеличения объема приводит к сгущению спектра резонансных частот, резонансные кривые отдельных видов колебаний перекрываются и резонатор теряет селективные свойства.

В устройствах миллиметрового и субмиллиметрового диапазонов и в оптических квантовых генераторах (ОКГ) был применен оптический резонатор, являющийся аналогом известного в оптике интерферометра Фабри-Перо (ИФП). Это наряду с дальнейшим развитием теории таких резонаторов позволило преодолеть затруднения, возникшие при разработке приборов субмиллиметрового диапазона.

Первоначально в миллиметровом диапазоне был создан открытый резонатор с плоскими полупрозрачными зеркалами для работы с отраженным сигналом, несколько позднее Колшоу разработал открытый резонатор проходного типа, обладающий значительно лучшими характеристиками. Последний прибор представлял собой систему из двух многослойных зеркал, расположенных параллельно друг другу, расстояние между которыми изменялось в широких пределах. Было показано, что с помощью подобного устройства можно определять малые потери в диэлектриках и производить точные измерения длины волны. Добротность оптического резонатора превышала 50 000, что близко к значению добротности лучших образцов объемных резонаторов. Улучшение качества зеркал позволило применить проходной оптический резонатор для таких точных измерений, как, например, измерение скорости распространения электромагнитных волн в вакууме.

Успешное использование А.М. Прохоровым, А. Шавловым и Ч. Таунсом открытых резонаторов для удлинения времени взаимодействия электромагнитной волны с рабочим веществом в квантовом генераторе заинтересовала многих исследователей, которые занялись разработкой теории ИФП с учетом явлений дифракции, существенно влияющей на работу прибора даже в оптической области спектра. В начале 60-х годов появились работы Фокса и Ли, в которых задача определения распределения полей, спектра резонансных частот и радиационных потерь, обусловливающих совместно с джоулевыми потерями ненагруженную добротность резонатора, сводилась к решению однородного интегрального уравнения Фредгольма второго рода. Резонаторы типа ИФП стали называть открытыми вследствие того, что поверхность их зеркал значительно меньше поверхности, ограничивающей резонансный объем между зеркалами. Благодаря сильной связи большинства собственных видов колебаний с открытым пространством происходит разрежение спектра резонансных частот. Резкую границу между оптическим резонатором и открытым резонатором провести невозможно. Систему называют открытым резонатором, если при ее возбуждении элементарным диполем или малым отверстием в центре одного из зеркал наблюдаются резонансы. Если же резонансы наблюдаются только при возбуждении плоской волной и резонансные кривые отдельных видов колебаний перекрываются, то система работает как интерферометр.

В простейшем случае открытый резонатор состоит из двух плоских бесконечно тонких дисков, расположенных параллельно друг к другу так, что их оси симметрии совпадают.

Экспериментально установлено, что такие резонаторы имеют дискретный спектр резонансных частот и соответствующие им собственные колебания с малыми потерями на излучение в свободное пространство.

Следовательно, если задать начальное распределение поля на одном из зеркал и представить его в виде суммы собственных колебаний такой системы, и считать, что эти колебания имеют различную связь со свободным пространством, то через некоторый промежуток времени, затухая по экспоненциальному закону, колебания будут иметь тем меньшую амплитуду, чем больше аргумент экспоненциальной функции. В конце концов в резонаторе будет существовать с заметной амплитудой только один вид колебаний с распределением поля, которое обеспечивает минимальные радиационные потери. Это в некотором приближении соответствует задаче Коши, но в данном случае различная связь со свободным пространством полей различных видов колебаний дает возможность найти характеристики нормального вида колебания, при котором потери минимальны. Очевидно, эту задачу разрешить тем легче, чем ближе исходное распределение поля к искомому.

Если отвлечься от явлений дифракции на ребрах зеркал, что справедливо для резонаторов с размерами зеркал, значительно превышающими длину волны, то можно смоделировать описанный выше процесс фильтрации, заменив отражения волны от зеркал последовательным прохождением ее сквозь абсолютно черные диафрагмы с апертурой отверстия, равной апертуре зеркала. Процесс распространения волны от диафрагмы к диафрагме можно описать с помощью линейного интегрального оператора, который позволяет найти поле в любой точке по заданному распределению на какой-либо поверхности. Очевидно, что если в такой системе останется волна, которая соответствует одному из собственных видов колебаний открытого резонатора, то при последовательном прохождении диафрагм нормированное поперечное распределение поля не будет изменяться. Связь с открытым пространством вызовет лишь уменьшение общей энергии, переносимой волной. Эти соображения позволяют свести задачу о нахождении собственных видов колебаний открытого резонатора к однородному интегральному уравнению Фредгольма второго рода типа

, (2.1)

где v - поперечное распределение скалярного поля вблизи зеркала;

- константа, определяющая резонансные частоты и потери резонатора; интегрирование проводится по поверхности одного из зеркал.

В квазиоптическом приближении, когда

(2.2)

ядро интегрального уравнения упрощается, становится симметричным, но не эрмитовым:

(2.3)

где

(2.4)

d - максимальное расстояние между зеркалами;

R - расстояние между точкой (х1 у1, z1) на одном из зеркал и точкой (х2, у2,z2) на другом.

Уравнения с такими ядрами в настоящее время детально не исследованы, хотя работы в этом направлении ведутся. Следует отметить, что это интегральное уравнение можно вывести более строгим путем, исходя из уравнений Максвелла.

3. Канализация энергии в субмиллиметровом диапазоне

3.1 Металлические волноводы

3.1.1 Одноволновые металлические волноводы

Металлические одноволновые волноводы являются наиболее распространенными в сантиметровом диапазоне и длинноволновом участке миллиметрового диапазона.

При переходе в коротковолновую часть диапазона субмиллиметровых волн свойства одноволновых волноводов значительно ухудшаются. В первую очередь следует отметить быстрое увеличение погонных потерь по мере укорочения длины волны.

Стенки реальных волноводов имеют неровности, соизмеримые с глубиной проникновения тока вследствие поверхностного эффекта и часто превышающие ее. Это приводит к удлинению пути тока и, следовательно, к дополнительному увеличению затухания по отношению к расчетному. Поэтому уже на волне 2 мм результаты экспериментов почти в полтора раза превосходят расчетные данные.

При использовании одноволновых металлических волноводов неизбежными являются потери в местах сочленения секций линии передачи.

Таким образом, большие потери и чрезвычайно жесткие требования на изготовление и сочленения делают одноволновые волноводы непригодными для передачи энергии в субмиллиметровом диапазоне даже на малые расстояния. Однако в длинноволновом участке диапазона ( = 1 - 0,5 мм) часто используют короткие, длиной от нескольких миллиметров до сантиметра, отрезки таких волноводов в детекторах, смесителях, возбудителях и других устройствах, моделирующих соответствующие устройства техники сантиметровых волн.

Одноволновые волноводы чаще всего изготовляют методами гальванопластики. Для этого предварительно из нержавеющей стали изготовляют оправку с размерами, равными размерам будущего волновода. Оправку полируют, обезжиривают и помещают в гальваническую ванну, где на ней наращивают слой меди требуемой толщины. Процесс изготовления волновода заканчивается извлечением оправки.

Характеристики

Тип файла
Документ
Размер
8,64 Mb
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее