62508 (588796), страница 2

Файл №588796 62508 (Классификация римских цифр на основе нейронных сетей) 2 страница62508 (588796) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Работа с .bmp файлами: нет.

Руководство: есть (русифицированное).

Пакет на английском языке.

Наличие пакета: нет.

Нейропакет Neural Planner

Предназначен для решения различных задач классификации объектов, обработки значений случайных процессов, решения некоторых математических задач, создания эффективных экспертных систем.

Работа с .bmp файлами: нет.

Руководство: есть (русифицированное).

Пакет на английском языке.

Наличие пакета: нет.

Таблица 1 Сравнение пакетов

Пакет

Доступность

Наличие необходимых моделей НС

Русификация / руководство на русском

Работа с .bmp

Neural Planner

нет

есть

нет / есть

нет

QwikNet32 v2.1

нет

нет

нет / есть

нет

NeuroShell Classifier v2.0

есть

есть

нет / нет

нет

NeuroShell 2

есть

есть

есть / есть

нет

NeuroPro

есть

нет

нет / есть

нет

Исходя из сравнительного анализа нейропакетов останавливаем свой выбор на продукте NeuroShell 2.

1.6 Минимальные требования к информационной и программной совместимости

Microsoft Office 2000, XP

Пакет NeuroShell 2

Графический редактор (Paint)

1.7 Минимальные требования к составу и параметрам технических средств

Операционная система Windows 95 или выше

32 Мб ОЗУ

500 Кб HDD


2. Обучение НС

2.1 Формирование исходных данных

В качестве исходных данных в задаче выступает графическое изображение римских цифр с различными вариациями. Поскольку в выбранном пакете нет графического редактора, изображение преобразуют в последовательность нулей и единиц по определенным правилам.

Данный пакет позволяет подавать на вход нейросети порядка 32000 значений для одной обучающей пары, но необходимо ограничить размер входного изображения, т.к. MS Excel XP имеет максимальное число столбцов 256.

При создании входного вектора мы руководствовались несколькими критериями:

  • Макимальная различимость

  • Минимальный размер

Изначально рассматривались различные варианты размерности входного вектора.

Минимально для различимости символов высота изображения цифры требуется 7 пикселей, т.к. 2 пиксела идет на изображение подчеркивания (это является особенностью написания римских цифр), а оставшиеся 5 на сам символ. На сетке меньшей высоты теряется различимость. Для определения второго параметра изображения мы брали в расчет те цифры, для написания которых требуется максимальная ширина сетки: это цифры 7 и 8. При написании этих цифр минимальной оказалась ширина = 9 пикселам. Дело в том что эти цифры состоят из нескольких символов: основной символ, изображающий цифру 5 либо 10, а также дополнительные, которые показывают сколько к основной цифре нужно добавить (либо отнять) единиц, чтобы получилась искомая. А поскольку именно в эти цифры входит максимально для наших данных по два дополнительных символа, два пиксела мы оставляем на промежуток между символами и основной символ, нам потребовалось не менее 9 пикселей.

Таким образом для моделирования был выбран размер изображения 7x9 пикселей.

Обучающая пара содержит 63+9=72 значения.

Представили 144 объекта различной формы.

В Excel получили файл, таблицу с обучающими параметрами.

Наш объект заносится в таблицу при помощи нулей и единиц, т.е. формируется соответствующий массив, записанный в одну строку, также в процессе обучения используются реальные выходные значения, которые записаны как одно значения в конце строки сформированного массива. Объекты, расположение которых должно быть выучено сетью, представляются размерной сеткой (7x9), где темным пикселям (частям объекта) соответствуют 1, а белым (пустое пространство) – 0.

изображение римской цифры 9.

изображение умышленно перевернуто нами для достижения лучшей терпимости сети к подаваемому углу изображения.

2.2 Окончательный выбор модели, структуры НС

По рекомендациям разработчиков пакета критерием остановки обучения будет:

события после минимума > 20000, так как с использованием встроенной калибровки этот критерий позволяет избежать переучивания сети и запоминания тестовых примеров.

Рассмотрим наиболее подходящие сети для решения данной задачи. Основные параметры, такие как виды функций активации: скорость обучения (=0,1),веса (=0,3),момент равен (=0,1)

По умолчанию для предсказания рекомендуется использовать сеть Ворда, содержащую два скрытых блока с разными передаточными функциями.

Стандартные сети.

Попробуем провести обучение с помощью модели 4-хслойной сети, в которой каждый слой соединён только с предыдущим слоем.

Структура НС:

  1. количество слоев: 4

  2. количество нейронов:

а) во входном слое: 63

б) в выходном слое: 9

3. вид функций активации:

а) входной слой – линейная [0;1]

б) выходной слой – логистическая

В таблице отражена зависимость минимальной средней ошибки на тренировочном и тестовом наборах от количества нейронов в скрытом слое.

Скорость обучения = 0,1; момент = 0,1; скрытые слои – слой 1 – 24 нейрона, слой 2 – 24 нейрона.

Таблица данных

Время обучения

Функции активации

Min средняя ошибка

1слой

2слой

на тренировочном наборе

на тестовом наборе

03:18

логистическая

логистическая

0,0000036

0,0002548

08:03

Гауссова

Гауссова

0,0000006

0,0003652

00:05

линейная

линейная

0,5047548

0,7126971

01:01

компГауссова

компГауссова

0,0000059

0,0004709

Исходя из таблицы, оптимальной структурой для данной сети являестся сесть с Гауссовыми активационными функциями.

Вых1

Вых2

Вых3

Вых4

Вых5

Вых6

Вых7

Вых8

Вых9

R квадрат

1,0000

1,0000

1,0000

1,0000

1,0000

1,0000

0,9995

1,0000

0,9999

СКО

0,002

0,002

0,001

0,001

0,001

0,002

0,007

0,001

0,004

Относ СКО %

0,155

0,195

0,073

0,057

0,082

0,166

0,722

0,084

0,351

НС после обучения показывает не очень хорошие обобщающие данные. Неплохие обобщающие данные сеть в середине интервала.

Скорость обучения и начальный момент на качество обобщения не влияют.

Сеть Ворда с двумя блоками в скрытом слое.

Структура НС:

  1. количество слоев: 4

  2. количество нейронов:

а) во входном слое: 63

б) в выходном слое: 9

В таблице отражена зависимость минимальной средней ошибки на тренировочном и тестовом наборах и времени обучения от вида функций активации.

Скорость обучения = 0,1; момент = 0,1

Таблица данных

1 скрытый слой

2 скрытый слой

Min средняя ошибка

Время обучения

Функция активации

Кол-во нейронов

Функция активации

Кол-во нейронов

на тренировочном наборе

на тестовом наборе

Комп.Гауссова

24

Комп. Гауссова

24

0,0000016

0,0005358

04:42

Гауссова

24

Гауссова

24

0,0000017

0,0019529

03:58

логистическая

24

логистическая

24

0,0000058

0,0003688

02:18

логистическая

24

Комп.Гауссова

24

0,0000043

0,0006007

01:35

Исходя из таблицы дла данной сети оптимальными будут гауссовы функции активации.

Вых1

Вых2

Вых3

Вых4

Вых5

Вых6

Вых7

Вых8

Вых9

R квадрат

1.0000

0.9992

0.9999

1.0000

0.9999

1.0000

0.9995

1.0000

1.0000

СКО

0.002

0.009

0.003

0.001

0.003

0.001

0.021

0.001

0.002

Относ СКО %

0.152

0.910

0.275

0.107

0.320

0.133

2.112

0.128

0.153

Данная сеть после обучения показывает хорошие обобщающие данные.

Характеристики

Тип файла
Документ
Размер
16,52 Mb
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее