48720 (588606), страница 2

Файл №588606 48720 (Распараллеливание многоблочных задач для SMP-кластера) 2 страница48720 (588606) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Рисунок 2. Иллюстрация ориентированного ациклического графа блоков

Определение

Критический путь (T): самый длинный путь в графе (от входа до выхода).

Верхний критический путь блока t (Tv): самый длинный путь от входа до t

Нижний критический путь блока t (Tn): самый длинный путь от t до выхода

P - количество процессоров в системе.

N(t) - Количество процессоров, выделенных для блока t.

Описание алгоритма

Шаг 1. Для каждого блока ti выделен один процессор N(ti) = 1. Построить расписание.

Шаг 2. Пусть X – множество всех блоков, для которых выделено меньше P процессоров.

Шаг 3. Пусть блок t – блок, у которого сумма Tv + Tn максимальная.

Выделить для t дополнительный процессор, N(t) = N(t) + 1. Построить новое текущее расписание.

Если после выделения, новый критический путь T’ < T то T = T’, иначе N(t) = N(t) – 1 и блок t исключить из множества X и считать предыдущее расписание текущим.

Шаг 4. Повторяем шаг 3 пока X не пусто

Суть алгоритма состоит в выделении максимально возможного количества процессоров для каждого блока с целью сокращения критического пути (т.е. сокращение общего времени выполнения всех блоков). Данный алгоритм исходит из наличия алгоритма построения расписания.

Алгоритм эффективный, учитывает зависимости между блоками, но не рассматривает проблему назначения групп процессоров для конкретных блоков и составления расписания их прохождения.

4.2 Упаковка в контейнеры

Bin-packin это множество алгоритмов для решения задачи: объекты различных объемов должны быть упакованы в конечное число контейнеров так, чтобы минимизировать количество используемых контейнеров. В нашем случае упаковка в контейнеры используется для равномерного распределения задач по всем процессорам.

Упаковка в контейнеры без разбиения объектов

Имеем список объектов L=(a1, a2, …, an) и их размеры s(ai) Є {1, 2, …, U}. Размер контейнеров V больше U, количество контейнеров m. Отсортируем список объектов по размеру в убывающем порядке. Первые m объектов упаковывать соответственно будем в m контейнеров. С остальными объектами действуем по принципу: упаковывать в контейнер, у которого занимаемого места меньше всего.

Упаковка в контейнеры с разбиением объектов

Существует два возможных варианта упаковки в контейнеры с разбиением объектов [4]: с сохранением и с увеличением объема данных. Будем рассматривать вариант с увеличением объема данных, так как после разбиения часто появляются дополнительные коммуникации между фрагментами.

Имеем список объектов L=(a1, a2, …, an) и их размеры s(ai) Є {1, 2, …, U}, U – размер контейнеров.

Введем некоторые понятия:

  • Эффективность алгоритма A: RA(L) = A(L)/OPT(L), где A(L) – нужное количество контейнеров когда применяем алгоритм A на список объектов L, OPT(L) – оптимальное количество контейнеров для данного списка объектов.

  • R называется асимптотической эффективностью в худшем случае, если

R = inf{r>=1: для некоторых N>0, RA(L)<=r для всех L где OPT(L)>=N}

  • Алгоритм А называется алгоритмом без лишнего разбиения если:

a) Разбивает объект только тогда, когда его размер больше размера контейнера

б) Разбивает объект на два фрагмента так, чтобы первый фрагмент вместится полностью в одном из контейнеров

в) Открывает новый контейнер только тогда, когда в уже открытых контейнерах нельзя упаковать новый фрагмент.

Известно, что для всех алгоритмов упаковки в контейнеры без лишнего разбиения:

R <= U/(U-2), U>2

Теперь рассмотрим алгоритмы NF, NFD, NFI, FFD-I

  • NF - Next-Fit

На каждом шаге открываем только один контейнер, упаковываем объекты по очереди, если размер объекта больше размера свободной части контейнера – разобьем на две части так, чтобы первая часть заполнила контейнер. После этого открываем новый контейнер и вторую часть туда упаковываем. Это очень простой алгоритм и имеет плохую эффективность

RNF=U/(U-2), U>=6

  • NFD, NFI (Next-Fit с ранее отсортированным списком объектов по размеру в убывающем/возрастающем порядке)

RNFD >= U/(U-2) если U=2n, n>=3

RNFD >= (U+1)/(U-1) если U=2n+1, n>=2

Но это только нижняя оценка, мы вполне сможем подобрать пример, когда NFD и NFI работают тоже плохо, как и NF.

  • FFD-I и FFI-I (Iterative First-Fit Decreasing/Increasing with Item fragmentation)

Попробуем упаковать все объекты списка L в фиксированное количество m контейнеров. Сортируем список объектов по размеру в невозрастающем порядке. Каждый объект будем упаковывать в первый подходящий контейнер, если такого нет, разобьем объект на две части. Первая часть должна заполнить первый свободный контейнер, а вторую часть положим в отсортированный список объектов. Если не удалось упаковать все объекты в m контейнеров, увеличиваем m и повторяем.

Пусть s(L) – сумма всех объектов в списке L.

1) Взять m=[s(L)/U]

2) FFD()

3) Если успешно, останавливаем

4) Иначе m=m+1 и goto 2)

Для алгоритма FFD-I:

RFFD-I <= U/(U-1) если U<=15

U/(U-1) < RFFD-I < U/(U-2) если U>=16

Получаем, что FFD-I лучше NFD/NFI и NF.

Алгоритм упаковки в контейнеры без разбиения показывает хорошие результаты, но не учитывает параллелизм внутри блоков (исходит из последовательной постановки). Так как алгоритм упаковки в контейнеры с разбиением исходит из идеального распараллеливания на мультикомпьютере – без обменов, то, в условиях необходимости синхронизации в процессе счета подзадачи, он не даёт ответа на вопрос составления итогового расписания, расположения объектов внутри контейнера, а также не учитывает необходимость разбиения объекта на равные части.

4.3 Алгоритмы EVAH

В 2001-ом году на международной конференции по параллельной обработке, организованной IEEE (Институтом Инженеров по Электротехнике и Радиоэлектронике) Джомери и Рупак Бизвас предложили ряд новых алгоритмов для решения задачи балансировки в приложениях гидрогазодинамики [2]. Эти алгоритмы описаны в статье “Task Assignment Heuristics for Distributed CFD Applications”. Этой статьи нет в свободном доступе, но идею алгоритма можно взять в другой статье этих же самых авторов.

В рамках этой работы будем использовать один алгоритм из этой серии, который называется Largest Task First with Minimum Finish Time and Available Communication Costs” (LTF_MFT_ACC, в первую очередь большие задачи с наименьшим временем выполнения и известными затратами на коммуникации). Позже EVAH был интегрирован другими разработчиками в реальных приложениях типа OVERFLOW-D (моделирование подвижных объектов в аэродинамике) и показал весьма неплохой результат.

Ядро алгоритма можно описать следующим образом:

Пусть:

zi – задача i

Xi – время выполнения zi

R(zi) – совокупность всех задач, от которых zi получает данных

D(zi) – совокупность всех задач, которые получают данные от задачи zi

C – время коммуникации

T(pi) – суммарное время выполнения задач на процессоре pi

1: Отсортируем список задач по весу (времени выполнения) в убывающем порядке

2: В начале время выполнения задач на каждом процессоре = 0 (процессоры свободные)

3: Для каждой отсортированной задачи zi выполнять:

3.1: Распределить задачу на процессор pj, у которого загрузка T(pj) наименьшая. Пересчитать T(pj) = T(pj) + Xi

3.2: Для каждой задачи zr в R(zi), назначенной на процессор pk != pj выполнить

T(pj) = T(pj) + Cir

Если задача zr (которая уже распределена на другой процессор) получает данные от задачи zi то надо добавить в T(pj) время коммуникации между zi и zr */

3.3: Для каждой задачи zd в D(zi), назначенной на процессор pm != pj выполнить

T(pm) = T(pm) + Cdi

Если задача zi получает данные от zd (которая уже распределена на процессор pm) то надо добавить в T(pm) время коммуникации */

4: Конец цикла

Для иллюстрации работы алгоритма рассмотрим следующий пример (рисунок 3).

Имеем четыре пересекающиеся сетки (блоки) zi (i=0..3). Надо распределить блоки по двум процессорам p0 и p1 так, чтобы минимизировать время выполнения.

Рисунок 3. Иллюстрация работы алгоритма EVAH

Шаг 1. Четыре блока отсортированы в убывающем порядке по времени выполнения (Xi), получаем: z3, z2, z0, z1

Шаг 2. В начале суммарное время выполнения на процессорах равно 0, T(p0) = T(p1) = 0

Шаг 3. Самый большой блок z3 назначен на процессор p0. Получаем T (po) = 75 в шаге 3.1. Так как никакие другие блоки не были еще назначены на процессоры, пропустим шаги 3.2 и 3.3 для z3.

Повторяем шаг 3 для задачи z2. По предложенному алгоритму z2 должна быть назначена на процессор, где нагрузка наименьшая и поэтому z2 назначена на процессор p1. Получаем T(p1) = 60 в шаге 3.1. На шаге 3.2 очевидно, что z3 получает от z2 данные и поэтому T(p1) = 60 + 4 = 64. На шаге 3.3 наоборот, z2 получает данные от z3 и поэтому T(p0) = 75 + 4 = 79.

Аналогично повторяем шаг 3 для распределения задач z0 и z1.

В результате распределения T(p0)=123, T(p1)=122. Значит, время параллельного выполнения будет 123 а время последовательного 225 (сумма всех Xi без затрат времени на коммуникации)

Заметим, что алгоритм EVAH имеет большое преимущество перед традиционными алгоритмами на неориентированных графах именно в силу возможной обработки ориентированного графа. Для многоблочных задач объем коммуникации между соседними блоками не всегда симметричный.

Алгоритм EVAH учитывает время на коммуникации, но не пытается распределить блоки на несколько процессоров, используя параллелизм внутри блока.

5 Исследование и построение решения задачи

5.1 Первоначальные предложения по отображению

Попытаемся свести нашу задачу отображения многоблочных задач на процессоры к задаче упаковки в контейнеры с дроблением грузов первого типа – дроблением с увеличением груза (накладными расходами).

Первый вариант:

Квантуем время на достаточно малые равные промежутки dt. Будем считать, что каждый контейнер имеет вместимость N (количество процессоров в вычислительной системе), а количество заполненных контейнеров обозначает время счета совокупности подзадач (если заполнено T контейнеров, то совокупное время счета распределенных на вычислительную систему подзадач будет T*dt). Будем считать, что каждый груз уже раздроблен на части весом Kmax (максимальное возможное количество процессоров для счета подзадачи, для каждого груза этот показатель свой). При дроблении количество частей в зависимости от веса каждой части будем получать по формуле [Time(K)/dt]+1, где Time(K) – время счета подзадачи на K процессорах.

Остается лишь ввести следующие ограничения:

  1. При дроблении груза веса частей всегда равны между собой

  2. В контейнере не может быть более одной части одного груза

  3. После появления части i-го груза в контейнере если i-ый груз не полностью выложен в контейнеры, то в следующем контейнере обязана появится часть i-го груза.

Этот вариант плох тем, что имеет отрицательную динамику роста общего веса груза при его дроблении – то есть полное время выполнения (равное времени выполнения, умноженному на количество задействованных процессоров) подзадачи уменьшается с увеличением количества частей, на которые разбивается соответствующий ей груз. Считаю, что данная отрицательная динамика не позволяет полностью свести нашу задачу к задаче упаковки в контейнеры с дроблением первого типа, а также делает известные методики упаковки неприменимыми.

Второй вариант:

Считаем, что каждый контейнер обозначает процессор. Груз – подзадачу. Будем считать, что каждый груз уже раздроблен на Kmin (минимальное возможное количество процессоров для подзадачи) частей (для каждого груза этот показатель свой). При дроблении вес частей в зависимости от количества будем получать по формуле Time(K), где K – количество частей, на которые раздроблен груз, а Time(K) – время выполнения подзадачи с использованием K процессоров. Далее для получения ответа будем варьировать вместимости контейнеров в поиске минимальной возможной вместимости для размещения всех грузов в данных N контейнерах.

Здесь также вводятся дополнительные ограничения:

  1. При дроблении веса частей всегда равные

  2. В контейнере не может быть более одной части одного груза

  3. А также ограничение, которое заметно сложнее выполнить:

После полной упаковки учитывая ограничения 1 и 2, должна существовать расстановка частей грузов в каждом контейнере (возможно, с добавлением в контейнеры фиктивных грузов для занятия места) такая, что все части одного груза имели бы равные начальные времена (начальное время для части груза в контейнере с упорядоченными частями грузов есть суммарный вес всех частей грузов с номерами меньшими данного). При этом возможно переполнение контейнеров и данное распределение считается неудовлетворяющим ограничению 3.

Второй вариант кажется предпочтительнее своей естественностью, однако поддержание ограничения 3 создает сильное препятствие для работы алгоритма отображения.

5.2 Эволюция предложений по отображению

Рассмотрим сначала второй вариант из подраздела 5.1

Выше изложенный принцип на данный момент не был использован для отображения с учетом параллелизма, однако был использован для отображения без учета параллелизма внутри подзадач. Был реализован и отлажен алгоритм, основанный на данном принципе и названный «Жадное Отображение», принято решение использовать жадную стратегию заполнения контейнеров – такую, при которой следующий груз-кандидат попадает в самый незаполненный контейнер.

Описание алгоритма:

  1. Сортируем задачи по сложности в невозрастающем порядке

  2. Помечаем все, как нераспределенные

  3. Находим самую сложную нераспределенную задачу t

  4. Находим самый незанятый процессор (с самым ранним финишным временем) p

  5. Ставим задачу t на процессор p и помечаем ее, как распределенную

  6. Если есть нераспределенные задачи, то переходим к пункту 3

Алгоритмическая сложность реализованного алгоритма есть O(N*logN + N*M), где N – количество подзадач, а M – количество процессоров.

По этому алгоритму были получены приемлемые отображения модельных и реальных многоблочных задач.

Главная проблема данного подхода в том, что его сложно применить в условиях разрешенного параллелизма внутри подзадачи, поэтому данный подход не был развит.

Теперь рассмотрим первый вариант из подраздела 5.1

Данный ранее изложенный принцип был использован для построения эффективного алгоритма отображения многоблочной задачи с учетом параллелизма ее независимых подзадач на процессоры – алгоритма под названием «Транспонированное Отображение». Была использована «непрерывная» модель при стремлении dt к нулю. Таким образом, уже нет контейнеров, а есть некая неограниченная полоса, поделенная на M (количество процессоров) полос вдоль. Был реализован и отлажен алгоритм, основанный на данной модели, принято решение использовать жадно-переборную стратегию.

Опишем основные принципы работы алгоритма и свойства отображения, поддерживаемые им в процессе работы.

Сначала введем несколько определений:

  • Интегральное время подзадачи на заданном количестве процессоров есть Time(K) * K, где Time(K) – время счета подзадачи на количестве процессоров K.

  • Минимальное интегральное время подзадачи есть Time(Kmin) * Kmin (здесь работает предположение невозрастающей эффективности распараллеливания)

Первый основной принцип – отображение подзадач в порядке невозрастания их минимального интегрального времени – жадная стратегия. Смысл этого принципа в том, чтобы сначала отобразить наиболее крупные подзадачи, а затем «заткнуть» свободные места задачами поменьше.

Второй основной принцип – для каждой подзадачи перебор ее возможных расположений – переборная стратегия. Была выбрана именно переборная стратегия, ибо чисто жадная стратегия давала слишком неэффективные отображения. Этот принцип позволяет более полно рассмотреть варианты отображения каждой конкретной подзадачи.

Третий основной принцип – отсечение перебора:

  • Если текущее промежуточное отображение позволяет отобразить рассматриваемую в данный момент подзадачу на k процессоров, дав ей стартовое время x, то алгоритм не будет исследовать возможность ее отображения на k процессоров с более поздним стартовым временем y, большим x.

  • Пусть tMax – максимальное по всем процессорам время освобождения процессора (по сути – промежуточный вариант итогового времени). Вариант расположения следующей рассматриваемой подзадачи назовём хорошим, если для него curStartTime + curTime <= tMax, где curStartTime – допустимое стартовое время для рассматриваемой подзадачи на k процессоров, а curTime – время ее исполнения на некотором рассматриваемом количестве процессоров k.

  • Если для подзадачи есть хорошее расположение, то выбираем в качестве результата хорошее расположение с минимальным стартовым временем, а среди хороших расположений с минимальным стартовым временем – хорошее расположение с минимальным количеством используемых процессоров.

  • Если хороших расположений нет, то выбираем то (предпочтение более раннему стартовому времени, а среди расположений с равным стартовым временем – расположению с меньшим количеством используемых процессоров), которое минимизирует выражение max((curStartTime + curTime) * M, tOccupied + curTime * k + tRestMin), где tOccupied – уже занятое отображенными подзадачами интегральное время, k – допустимое количество процессоров для рассматриваемой подзадачи, tRestMin – сумма минимальных интегральных времен еще не отображенных подзадач (не включая рассматриваемую в данный момент подзадачу)

Также стоит отметить, что данный алгоритм транспонированного отображения при запрете параллелизма подзадач переходит в описанный выше алгоритм жадного отображения, основанный на втором варианте модели.

6 Описание практической части

Практическая реализация служит для предоставления программистам Fortran-DVM и C-DVM возможности эффективно исполнять многоблочные задачи. Представляет собой статическую библиотеку, предоставляющую вызовы для генерации отображения, а также исполняемый файл для генерации отображения в диалоговом режиме.

6.1 Обоснование выбранного инструментария

Для реализации был выбран стандартный Си++ с использованием компилятора GCC [7], ибо важна была кроссплатформенность, так как библиотека встраивается в систему поддержки времени исполнения LibDVM, и должна работать в том числе под управлением ОС семейства GNU/Linux.

6.2 Общая архитектура разработанного средства

Разработанное программное средство представляет собой набор из исходных текстов на языке Си++, shell-скрипт для сборки библиотеки и исполняемого файла, примеры входных файлов с описаниями блоков для работы в диалоговом режиме. Общий объём исходных текстов составляет 1086 строк, из них 1034 – Си++ код, а 52 – shell-скрипт. Архитектура программного средства такова, что допускает простое добавление другого алгоритма отображения и предоставляет удобные интерфейсы для построения отображения, а также механизм самопроверки корректности построенного отображения. Оно позволяет гибко менять характеристики каждой подзадачи, такие как минимально-допустимое количество процессоров, необходимое для запуска подзадачи, равно как и максимально-допустимое количество процессоров, на котором подзадача может выполняться, а также время (в условных единицах), необходимое для завершения подзадачи.

Ниже, на рисунке 4 приведена диаграмма классов, иллюстрирующая архитектуру приложения, где «Жадное Отображение» и «Транспонированное Отображение» суть не классы, а отдельные функции, реализующие описанные в предыдущем разделе алгоритмы отображения. Также «DVM Адаптер» суть не класс, а отдельная функция для генерации представления, используемого в системе поддержки времени исполнения LibDVM.

Класс «Данные Подзадачи» предназначен для хранения основных характеристик исходной подзадачи, таких как минимальное допустимое количество процессоров, максимальное допустимое количество процессоров, базовый способ вычисления времени на основе использования формулы Амдала, параметризованной значениями времени исполнения последовательной части и времени исполнения параллельной части на одном процессоре. Основным методом в интерфейсе является получение времени исполнения подзадачи в зависимости от количества процессоров, на которых планируется ее запустить.

Класс «Подзадача» предназначен для описания подзадачи с уже назначенным конкретным числом процессоров.

Класс «Квант Загрузки Процессора» предназначен для описания интервала времени на одном из процессоров, занимаемых конкретной подзадачей.

Класс «Загрузка Процессора» предназначен для хранения структуры загрузки одного процессора, в какие времена и на какие длительности какие подзадачи планируется запустить. Также он занимается проверкой корректности построенного отображения в рамках одного процессора.

Класс «Отображение Подзадачи» предназначен для сбора информации о том, на какие процессоры какая задача отображена, ее стартовое время, ее финишное время. Также он занимается проверкой корректности построенного отображения в рамках одной подзадачи – ее стартовые, равно как и финишные, времена на всех процессорах, на которых планируется ее счет, должны совпадать.

Класс «Отображение» предназначен для сбора информации обо всём отображении в целом, вывода результатов, получения агрегированных данных об отображении.

При добавлении нового алгоритма необходимо знание небольшого интерфейса классов «Отображение», «Данные Подзадачи», «Подзадача».

Рисунок 4. Диаграмма классов разработанного средства

6.3 Схема работы средства

Разработанное программное средство предлагается использовать C-DVM и Fortran-DVM программистам вместо ручного отображения [1]. Следует вместо вызова функции ручного отображения сделать следующее:

  • Завести массив типа int размером на, как минимум, количество блоков (назовем его renum)

  • Узнать количество процессоров в системе (например, вызовом NP = NUMBER_OF_PROCESSORS( ) )

  • В зависимости от размерности блоков вставить вызов mproc_adv1_ для одномерных блоков, mproc_adv2_ для двумерных и так далее. Функции вида mproc_adv##n##_ имеют следующий прототип:

int mproc_adv##n##_ (int *low_proc, int *high_proc, int *size, int *num_blocks, int *num_proc, int *renum);

Где в первый аргумент – массив целых чисел – будет вписан нижний индекс номеров используемых для подзадачи процессоров; во второй соответственно верхний индекс номеров используемых для подзадачи процессоров; третий аргумент должен содержать размеры блоков по каждому измерению (например, для двумерных блоков размер i-го блока есть size[2 * i] по первому измерению и size[2 * i + 1] по второму); четвертый аргумент суть указатель на число блоков; пятый – указатель на число процессоров; шестой – массив, куда следует записать порядок прохождения подзадач для последующей его передачи системе LibDVM.

  • В директивах DVM следует включить полученную перенумерацию. (например, для Fortran-DVM программы, фрагмент кода:

*DVM$ TASK_REGION TSA

*DVM$ PARALLEL ( IB ) ON TSA( IB )

DO 50 IB = 1,NBL

CALL JACOBI(block(IB)%PA,

block(IB)%PB,SIZE(1,IB),SIZE(2,IB))

50 CONTINUE

*DVM$ END TASK_REGION

преобразовать так:

*DVM$ TASK_REGION TSA

*DVM$ PARALLEL (IB) ON TSA(renum(IB) )

DO 50 IB = 1,NBL

CALL JACOBI(block(renum(IB))%PA, block(renum(IB))%PB,SIZE(1, renum(IB)), SIZE(2, renum(IB)))

50 CONTINUE

*DVM$ END TASK_REGION)

После этих модификаций программа будет использовать функционал разработанного программного средства. Схематично процесс представлен на рисунке 5.

Рисунок 5. Схема работы разработанного программного средства

Схема на рисунке 5 отражает работу с разработанной библиотекой. Кроме этого также возможна работа в диалоговом режиме с разработанной исполняемой программой для генерации отображений. Для работы с ней, необходимо запустить исполняемый файл и следовать инструкциям, появляющимся на экране. Есть возможность сгенерировать случайным образом блоки, их характеристики; задать вручную; прочитать из файла. Формат файла, описывающего блоки таков: первая строка содержит количество процессоров, за ней построчно идут описания блоков, для каждого блока отдельная строка вида «порядковый номер время последовательной части время параллельной части минимальное количество процессоров максимальное количество процессоров». Программа построит отображение, проверит его корректность, выведет временные характеристики работы алгоритма отображения, временные характеристики полученного отображения; а также, в случае небольшого размера входных данных, выведет на экран в виде текстовой диаграммы картину загрузки процессоров. На рисунке 6 изображен пример сессии работы с разработанным программным средством в диалоговом режиме.

Рисунок 6. Пример сессии работы с разработанным программным средством в диалоговом режиме

6.4 Характеристики функционирования

Пусть имеется n подзадач и m процессоров, тогда алгоритмическая сложность разработанного программного средства при использовании алгоритма «Транспонированное Отображение» асимптотически не превосходит C * (n * log(n) + n * m). Затраты по памяти асимптотически не больше C * (n + m), где C равен 2 килобайтам плюс-минус 30 процентов. Время работы на тесте из 10000 блоков, 2048 процессоров на процессоре Intel Core 2 Duo 2.33 ГГц составило 100 секунд. При реализации были использованы быстрые структуры данных такие, как красно-черные деревья с помощью стандартной библиотеки шаблонов языка Си++, а само представление данных было оптимизировано под алгоритм.

Алгоритм был протестирован на данных о блоках реальной задачи из 810 подзадач по моделированию аэродинамики самолета при отображении на 29, 57, 128, 256, 384 процессоров.

Оценки времени выполнения каждой подзадачи брались по закону Амдала с долей последовательной части равной 0,1. Запусков счета этой задачи с различными отображения не производилось, все расчеты времени в условных единицах и являются теоретическими на основании знаний о размерах блоков.

Получаемые отображения сравнивались с результатами работы алгоритма отображения без учета параллелизма подзадач («Жадное Отображение»), а также с одним из вариантов используемого в DVM отображения, работающему по алгоритму:

Пусть есть M процессоров

Пусть size(i) – размер i-го блока

  1. Посчитать суммарный размер блоков, пусть он равен S

  2. Положить счетчик процессоров curProc равным единице. Положить счетчик промежуточного суммарного размера блоков curSum равным нулю.

  3. Для каждого блока i выполнять:

    1. Отобразить задачу i на процессор curProc.

    2. curSum = curSum + size(i)

    3. Если curSum >= curProc * S / M то curProc = curProc + 1

  1. Конец цикла

Рисунок 7. Сравнение результатов отображения различных алгоритмов на различном количестве процессоров

Как видно из диаграмм на рисунке 7, на больших количествах процессоров (начиная с 57), алгоритм с использованием параллелизма внутри подзадачи дает лучшие результаты.

Также заметно, что на 128, 256, 384 процессорах у алгоритмов, не учитывающих параллелизм подзадач, итоговое время исполнения совпадают это происходит из-за наличия нескольких подзадач сложности 11648, что заметно больше остальных сложностей. Получается, что эти наиболее сложные подзадачи тормозят выполнение других менее сложных подзадач. А в случае с 384 процессорами почти в три раза.

Также были проведены реальные тесты на кластере СКИФ-МГУ на другой многоблочной задаче – модельной задаче с 10 блоками. Были произведены запуски одной и той же задачи с использованием алгоритмов «Транспонированное Отображение» и ручного отображения, работающего по следующему алгоритму:

1. Если количество блоков меньше количества процессоров, то каждый блок отобразить на все имеющиеся процессоры

2. Если количество блоков не меньше количества процессоров, то, если n блоков и m процессоров, i-ый блок отобразить на процессоры [1 + (i-1)*(m/n) .. i * (m/n)]

Для каждого алгоритма были произведены пуски с использованием 1, 4, 9, 10, 16, 56 процессоров. В качестве результата бралось общее время работы всей задачи в секундах – в ней внутри каждого блока считался Якоби, 100 итераций. На рисунке 8 наглядно продемонстрированы полученные времена работы.

Рисунок 8. Сравнение результатов отображения различных алгоритмов на различном количестве процессоров

7 Заключение

В рамках этой работы рассмотрены разные алгоритмы для отображения многоблочных задач. Предложен эффективный алгоритм отображения подзадач, использующий возможность распараллеливания подзадач. Он реализован в составе статической библиотеки, подключаемой во время компиляции совместно с системой поддержки времени исполнения LibDVM, а также в виде интерактивного приложения для генерации отображений.

В дальнейшем стоит задача автоматического определения границ блоков (сейчас блоки определяются ручным образом) для сетки сложной структуры, а также задача усовершенствования предлагаемого алгоритма отображения вводом в рассмотрение неоднородных вычислительных систем, а также учётом затрат на коммуникации.

8 Список цитируемой литературы

1. Н.А. Коновалов, В.А. Крюков, А.А. Погребцов, Н.В. Поддерюгина, Ю.Л. Сазанов. Параллельное программирование в системе DVM. Языки Fortran DVM и C-DVM. Труды Международной конференции "Параллельные вычисления и задачи управления" (PACO’2001) Москва, 2-4 октября 2001 г., 140-154 с.

2. M. Jahed Djomehri, Rupak Biswas, Noe Lopez-Benitez. Load balancing strategies for multi-block overset grid applications [PDF] (http://www.nas.nasa.gov/News/Techreports/2003/PDF/nas-03-007.pdf)

3. Oliver Sinnen. Task Scheduling for Parallel Systems // John Wiley And Sons, Inc. 2007.

4. Nir Menakerman, Raphael Rom. Bin Packing with Item Fragmentation // Algortihms and Data Structures. Springer Berlin / Heidelberg, 2001. Volume 2125/2001. P. 313-324

5. Andrei Radulescu, Arjan J.C. van Gemund. A Low-Cost Approach towards Mixed Task and Data Parallel Scheduling // ICPP. 2001. P. 69-76

6. Buyya, Rajkumar. High Performance Cluster Computing : Architectures and Systems, Volume 1 // Prentice Hall. 1999.

7. GCC, the GNU Compiler Collection [PDF] (http://gcc.gnu.org/onlinedocs/gcc-4.5.0/gcc.pdf)

Характеристики

Тип файла
Документ
Размер
14 Mb
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6643
Авторов
на СтудИзбе
293
Средний доход
с одного платного файла
Обучение Подробнее