48067 (588519), страница 2
Текст из файла (страница 2)
Для крашения текстильных материалов в основном используются два метода – поверхностное крашение и печать. Кроме того, широко применяется крашение химических волокон в массе.
Поверхностное крашение сводится к погружению текстильного материала в раствор красителя. Для крашения могут применяться как индивидуальные красители, так и их смеси. При этом процесс крашения может быть однованновым и многованновым, в последнем случае текстильные материалы поочередно погружаются в несколько растворов красителей (для изделий, выработанных из нескольких видов волокон). Материалу, состоящему из волокон разного вида, можно придать однородный цвет, если окрасить отдельные волокна в цвета, дающие внешне однородную окраску.
Крашение способом печати сводится к нанесению на полотно текстильного материала цветных рисунков или узоров с помощью печатных валиков. Осуществляется такое крашение на цилиндрических тканепечатных машинах с помощью паст красителей.
Поверхностное крашение и печать используются для текстильных материалов из любых волокон. Крашение в массе применяется исключительно для химических волокон. Оно сводится в введению мельчайших частичек красителей или пигментов в массу полимера (раствор или расплав) перед формованием волокна.
Для снятия текстильных волокон с поверхности предметов пользуются инструментами и липкими пленочными материалами. Инструментами в данном случае служат пинцеты, скальпели, шпатели и др. Наиболее эффективны адгезионные пленочные материалы. Преимущество их применения состоит в том, что при этом сохраняется картина распределения волокон в наслоениях и одновременно с волокнами снимаются другие сопутствующие им микрообъекты. Изъятые волокна могут быть подвергнуты предварительному микроскопическому исследованию непосредственно на пленке.
1.2 Методы обработки изображений
Процесс распознавания объектов изображений представляет собой совокупность этапов выделения признаков, характеристик и классификации объектов по ним. Полученная на первом этапе информация является входной к этапу классификации. В качестве такой информации обычно используется либо контурное, либо скелетное представление объекта (когда текстурные характеристики не анализируются). Это связано с тем, что существенно расширяются возможности распознавания, когда объекты представлены в таком виде. Однако следует отметить, что скелетное и контурное представления имеют свои особенности, преимущества, недостатки и по сравнению друг с другом, и по сравнению с другими характеристиками, получаемыми на первом этапе.[2]
Контурное представление кажется более предпочтительным, нежели скелетное, в плане информативности. Очевидно, информативность контура выше, поскольку, имея контурное представление всегда можно получить скелетное, в то время как обратная операция не дает однозначного результата. Таким образом, происходит потеря некоторой информации об объекте. Иногда это приводит к упрощению процесса распознавания, а иногда затрудняет его. Следует отметить, что в плане доступности информации предпочтительным является скелетное представление. Действительно, осуществить структурный анализ формы объекта по скелету проще, чем по контуру. Это связано с тем, что в скелетном представлении явно выражены узлы (точки ветвления), линии, углы. Таким образом совместное использование распознавания по контуру и по скелету представляется наиболее целесообразным, когда требуется повышенное качество распознавания и не накладываются временные ограничения. К сожалению последнее возможно далеко не всегда. Поэтому обычно используется какое-либо одно представление в зависимости от класса объектов, подлежащих распознаванию. Например, для распознавания линейных объектов используются скелеты, а для площадных – контура.
По виду анализа алгоритмы[3] распознавания объектов по контуру можно разделить на три группы:
статистический;
структурный;
синтаксический.
По технологии обработки контурной информации среди алгоритмов распознавания можно выделить три основные группы:
алгоритмы, отслеживающие и обрабатывающие только граничные точки;
алгоритмы, отслеживающие граничные и некоторые другие точки;
алгоритмы, выделяющие и обрабатывающие граничные элементы (точки, штрихи) статистическими методами.
Методы выделения контура условно можно разделить на следующие группы: методы выделения перепадов яркости; методы отслеживания(или обхода) контуров; сканирующие методы выделения контуров.
В методах первого класса в окрестности каждой точки вычисляют градиент перепада яркости. Точки резкого изменения градиента выделяются как контурные. Таким образом, строится контурная модель, часто состоящая из набора незамкнутых штрихов. Эти методы в основном используются в полутоновых и цветных изображениях. На основании такой модели очень трудно описать форму объектов. Поэтому чаще всего исходные изображения сводят к бинарным. На последних в основном используются методы двух других классов, так как контур можно получить путем локального логического анализа изображения. Сканирующие методы позволяют выделять контуры объектов в процессе однократного просмотра исходного изображения. Для этого используются описания двух соседних строк изображения, списковые структуры, методы переиндексации.
Методы отслеживания наиболее проработаны и просты в реализации. Однако в большинстве из них сначала выделяются границы, а затем осуществляется их аппроксимация. Это требует больших затрат памяти и времени.
Более универсальный подход – совмещение этапов отслеживания и аппроксимации контура. Эффективность с точки зрения машинного времени для сжатия контурного описания достигается за счет применения локальных методов линейной аппроксимации, основанных на анализе геометрических особенностей заданной кривой. Различные эвристики позволяют сделать операцию аппроксимации, линейно зависящей от количества точек контура.
На исходном растре возможно наличие посторонних шумов. Поэтому для выделения элементарных объектов графического изображения необходимо устранить эти шумы.
Существует много критериев, по которым оценивается улучшенное изображение. Это, например, улучшение качества снимка для его визуального восприятия, минимизация среднеквадратичного отклонения исходного изображения от обработанного, сравнение с эталоном и т.д. В нашем случае нет идеального изображения, к которому нужно стремиться или с которым можно сравнивать. Цель фильтрации шумов графических изображений заключается в устранении помех, которые могут повлиять на структуру и форму выделенных объектов. Другими словами, данная операция должна подготовить изображение для операций утоньшения и выделения контуров с тем, чтобы в последующем на растровом изображении были выделены объекты, в точности соответствующие исходным. Исходя из анализа графических изображений, для разработки надежных алгоритмов фильтрации выделены основные виды помех, присутствующие на изображении.
1.3 Представление изображения в форматах RGB и HSB
Согласно работе [4] основой теории цветового зрения является тот установленный экспериментально факт, что все цвета могут быть получены путем сложения (смешения) трех световых потоков, например, красного, зеленого и синего с высокой насыщенностью (RGB – представление). Стандартная колориметрическая система RGB была принята для цветовых измерений всеми странами мира в 1931г. В её основу были положены исследования, проведенные английским физиком Д. Максвеллом, который в 1860 г. построил равносторонний цветовой треугольник. Вершины последнего соответственно характеризуют спектральные цвета: красный R ( = 630 нм), зеленый G ( = 528 нм), синий B ( = 457нм), как наиболее равномерно распределенные по спектру: красный – на низких частотах, зеленый – на средних и синий – на высоких частотах.
Экспериментально установлено (закон Грассмана), что количественно и качественно световой поток может быть определен следующим равенством:
F’ = r’R + g’G + b’B = mF,(1.1)
где F’ - заданный или искомый световой поток;
r’, g’, b’ – количества или модули цветов красного R, зеленого G или синего B;
произведения r’R, g’G, b’B называются цветовыми компонентами потока;
m = r’ + g’ + b’ – представляет собой сумму (алгебраическую) количеств (модулей) цветов и называется цветовым модулем;
F – цветность потока F’.
Воспроизведение каждого цвета при установленных основных цветах однозначно, то есть каждому воспроизведенному цвету соответствует только одна комбинация основных цветов. Воспроизведенный цвет определяется количеством основных цветов r’, g’, b’. Однако оперировать этими количествами неудобно и модули принято выражать в количествах единичных цветов. Для этого вводятся относительные величины:
r = r’/(r’+g’+b’); g = g’/(r’+g’+b’); b = b’/(r’+g’+b’),(1.2)
характеризующие цветность и называемые координатами цветности.
Из приведенных выше соотношений следует, что r + g + b=1.
Система RGB удобна тем, что ее параметры можно определять экспериментально, так как основные цвета R, G и B реальны. В частности, в качестве цветов G и B взяты значения, соответствующие ярко видимым линиям паров ртути. Наличие отрицательных ординат для большой группы реальных цветов затрудняет калориметрические расчеты, что является одним из недостатков системы RGB. Вторым недостатком служит то, что для вычисления количественной характеристики яркости цвета необходимо определить все три его компонента.
Исходное 3-х зональное изображение в формате rgb преобразуется в набор скалярных планов. Каждый из планов можно представить как компоненту нового векторного поля [5], которое получено с помощью локальных преобразований исходного. Основные три из таких компонент получаются с помощью нелинейных преобразований цветовых координат rgb->HSB (Hue, Saturation, Brightness). Существует большое число цветовых координат, которые более или менее соответствуют физиологическому восприятию цвета здоровым человеком. Система координат HSB является одной из наиболее производительных среди известных.
Яркость – характеристика удельной интенсивности свечения излучающей или отражающей поверхности. Яркость измеряется силой света, излучаемого единицей поверхности. Сила света характеризует интенсивность излучения света источником в данном направлении. Измеряется плотностью светового потока, излучаемого в молом телесном углу, к величине этого угла.
Насыщенность определяется количеством примеси белого в рассматриваемом цвете. Иначе говоря, насыщенность означает восприятие степени чистоты цвета, то есть степень его свободы от примеси белого цвета. Насыщенность представляет собой число световых порогов, отделяющих данный цвет от белого, равной с ним яркости.
Одним из планов является пространственное распределение насыщенности, определяющее степень окрашенности объекта. В связи с тем, что для слабоокрашенных объектов цветовая компонента вычисляется со значительной погрешностью, снижающей в результате точность цветовой селекции, вводится порог насыщенности, ниже которого цвет объекта считается серым (бесцветным). Цветовая компонента определяется на круге, в то время как остальные – на обычной числовой оси. Серый цвет представлен бинарным планом – маской, которая определяет (не)окрашенные области на изображении, и планом яркости.
1.4 Хранение растровых изображений в формате Bitmap
Формат bitmap изображения может хранить точную информацию о любом возможном изображении, поскольку каждое изображение может быть разбито на сетку, настолько мелкую, насколько это доступно человеческому глазу.
Аппаратно независимый формат хранения изображения Bitmap [6] был разработан фирмой Microsoft и предназначен для хранения и отображения растрового изображения. Файлы аппаратно независимого bitmap могут содержать изображения с 1, 4, 8 или 24 битами на пиксель. 1-, 4- и 8-битные изображения имеют карты цветов, тогда как 24-битные изображения имеют непосредственную цветопередачу.
1.5 Экономическое обоснование и охрана труда
В работе [7] отражены действующие в настоящее время требования, обобщена новая справочная и учебная литература по определению экономической эффективности проектируемых новых программных средств. Приведены все необходимые формулы и методы для экономического обоснования дипломного проекта. Содержится пример расчета эффективности разрабатываемого программного средства.
В работе [8] описаны вредные факторы, влияющие на пользователя в процессе работы с компьютером, определяются методы защиты от этих воздействий. Кроме этого, приведены стандарты безопасности, которым должны соответствовать мониторы компьютеров и защитные фильтры. Влияние мониторов на зрительную систему, опорно-двигательную систему операторов подробно рассмотрено в источниках [9] и [10]. Приведены рекомендации по организации рабочего времени за экраном монитора, а также по расположению рабочих мест в помещении при соблюдении норм безопасности. Описаны методы защиты от излучений мониторов. Источники [11] и [12] являются нормативными документами, определяющими требования к видеотерминальным устройствам персональных компьютеров. В них подробно представлены нормы излучений, безопасные для пользователя.
2. СТРУКТУРНОЕ ПРОЕКТИРОВАНИЕ
2.1 Структура системы обработки текстильных волокон
Обобщенная структурная схема системы обработки текстильных волокон представлена на чертеже РТДП 5.000.001. На ней представлены следующие модули:
1. Cбор информации с места преступления либо объектов вещной обстановки. На данном этапе производится сбор данных для последующей обработки. Для обнаружения, фиксации и изъятия текстильных волокон используется аппаратура и приборы, имеющиеся на вооружении у следователей, экспертов, техников, приспособленные для работы с небольшими количествами веществ и материалов [1]. Кроме того, для изъятия текстильных волокон, особенно когда их наличие лишь предполагается, применяют специальные липкие пленки и ленты. Изъятие волокон как технический прием подразумевает отделение их от предмета-носителя и перенесение в среду, защищающую волокна от повреждений. Для изъятия единичных волокон удобны адгезионные пленочные материалы. Для снятия с объектов-носителей комочков волокон, фрагментов нитей, пряжи пользуются пинцетами и другими инструментами. Пылезаборники применяют лишь при сборе волокон, рассеянных на больших площадях либо находящихся в глубине изделий, в щелях, узких пазах и других труднодоступных местах. Объекты, направляемые на исследование, соответствующим образом зафиксируются и надежно упаковываются. Средства, используемые для этого, обеспечивают защиту от повреждений и дополнительных загрязнений. Этим требованиям лучше всего отвечают пленки из полиэтилена и стеклянная посуда.
2. Ввод данных в ЭВМ, получение исходных изображений. Для дальнейших исследований на ЭВМ получают фотографии исследуемых объектов. Для этого каждые элемент исследования подвергается съемке цифровыми камерами либо высококачественным фотооборудованием с последующим сканированием фотографий. При этом используются различные фильтры, освещение и другие приемы для максимальной эффективности обнаружения. Изображение, полученное каким либо из способов на ЭВМ, преобразуется в формат BMP 24 bit для последующей обработки. Следует отметить, что на данном этапе применяется только высококачественное оборудование.
3. Предварительная обработка исходных данных. При использовании сканеров последние могут не распознать некоторые цвета и изображение получается не совсем качественное, что может сказаться на дальнейшем ходе исследований. Поэтому предварительно фотографии подвергаются фильтрации любыми доступными программными средствами, например Photoshop.
4. Первичный анализ, построение планов и гистограмм. Для проведения выделения необходимо получить информацию о точках изображения, их яркости, насыщенности, цветности. Для этого строятся r, g, b – планы, производится преобразование изображения из rgb – представления в hsb, строятся гистограммы цветности, насыщенности и яркости. Эти данные активно используются на последующих этапах.















