47792 (588502), страница 6
Текст из файла (страница 6)
Рис 6.1. Кривая силы света светильника с двойной крестовой оптикой.
Благодаря такому светораспределению в верхней полусфере яркость потолка в любом месте, в том числе и непосредственно под светильником, не превышает 200 кд/м2. Габаритная яркость светильников в зоне углов излучения более 50 от вертикали ограничивается в обеих плоскостях 200 кд/м2. (рис. 6.2.)
Рис.6.2. Ограничение яркости (L) светильников общего освещения для работы с видеотерминалом
В ВЦ применяют одностороннее естественное освещение. В машинных залах рабочие места операторов, работающих с дисплеями, располагают подальше от окон и таким образом, чтобы оконные проемы находились сбоку от работающих. В случае если экран ВТ обращен к оконному проему, должны быть предусмотрены специальные экранирующие устройства. Окна рекомендуется снабжать светорассеивающими шторами (=0,5-0,7), регулируемыми жалюзи или солнцезащитной пленкой с металлическим покрытием.
В тех случаях когда одного естественного освещения в помещении недостаточно, устраивают совмещенное освещение. При этом дополнительное искусственное освещение в помещении и рабочих местах должно создавать хорошую видимость информации на экране ВТ, машинописного и рукописного текста и других рабочих материалов. При этом в поле зрения работающих должны быть обеспечены оптимальные соотношения яркости рабочих и окружающих поверхностей, исключена или максимально ограничена отраженная блеклость от экрана и клавиатуры в результате отражения в них световых потоков от светильников и источников света.
Для искусственного освещения помещений ВЦ следует использовать главным образом, люминесцентные лампы белого света (ЛБ) и темно-белого цвета (ЛТБ) мощностью 20,40 или 80 Вт.
Планировка рабочего места должна удовлетворять требованиям удобства выполнения работ и экономии энергии оператора, рационального использования площадей и удобства обслуживания устройств ЭВМ. Кнопки для включения, ручки управления средств сигнализации должны обеспечивать минимальные затраты.
6.1.7 Расчет естественного освещения
Помещения с постоянным пребыванием людей должны иметь, как правило, естественное освещение.
Естественное освещение подразделяется на боковое, верхнее и комбинированное.
При одностороннем боковом освещении нормируется минимальное значение КЕО в точке, расположенной на расстоянии 1 метра от стены, наиболее удалённой от световых проёмов, на пересечении вертикальной плоскости характерного разреза помещения и условной рабочей поверхности (или пола).
При двухстороннем боковом освещении нормируется минимальное значение КЕО в точке посередине помещения на пересечении вертикальной плоскости характерного разреза помещения и условной рабочей поверхности (или пола).
Исходные данные для расчета:
-
размер помещения — 15 * 17 * 4, м;
-
два окна с двойным остеклением и металлическими переплетами выходят на восток;
-
площадь остекления — 4 м2;
-
размеры остекления — 240*200, см.
Нормируемое значение КЕО eн определяется по формуле
|
| (6.1.) |
где
= 1,5% для бокового освещения,
m - коэффициент светового климата, принят 0,9,
C - коэффициент солнечности климата, принят 0,8.
Получаем
= 1.50.90.8 = 0.1.
Предварительный расчёт площади боковых проёмов производится по формуле
|
| (6.2.) |
где S0 - площадь световых проёмов в свету,
Sn - площадь пола помещения,
eH - нормированное значение КЕО,
Кз - коэффициент запаса, принят 1,2,
0 - световая характеристика окно, принят 15,
Кзд - коэффициент, учитывающий затенение окон противостоящими зданиями, принят 1,2,
0 - коэффициент светопропускания материала, определяется по формуле
|
| (6.3.) |
где1 - коэффициент светопропускания материала, принят 0,8,
2 - коэффициент, учитывающий потери света в переплётах светопроёмов, принят 0,6,
3 - коэффициент, учитывающий потери света в несущих конструкциях при боковом освещении, принят 1,
4 - коэффициент, учитывающий потери света в солнцезащитных устройствах, принят 1,
5 - коэффициент, учитывающий потери света в защитной сетке, устанавливаемой под фонарями, принимается равным 0,9.
Отсюда
= 0,4.
r1 - коэффициент, учитывающий повышение КЕО при боковом освещении, принят 1,25.
При выборе коэффициентов использовались значения для лаборатории центра ИТ.
Расчёт коэффициента естественной освещённости (КЕО) производится по формуле
|
| (6.4.) |
где
- геометрический КЕО в расчётной точке при боковом освещении, учитывающий свет неба,
q - коэффициент, учитывающий неравномерную яркость облачного неба, принят 0,91 при угловой высоте светопроёма над рабочей поверхностью 34 град,
- геометрический КЕО в расчётной точке при боковом освещении, учитывающий свет, отражённый от противостоящих зданий,
R - коэффициент, учитывающий относительную яркость противостоящих зданий, принят 0,15 при Z1 = 0,5, Z2 = 1.
Геометрические коэффициенты естественной освещенности, учитывающие прямой свет неба, в какой-либо точке помещения определяются по формуле
|
| (6.5.) |
где n1 - количество лучей проходящих от неба через световые проёмы в расчётную точку на поперечном разрезе помещения, принято 7,
n2 - количество лучей проходящих от неба через световые проёмы в расчётную точку на плане помещения, принято 8.
Геометрические коэффициенты естественной освещенности, учитывающие свет, отражённый от противостоящего здания
при боковом освещении определяется по формуле
|
| (6.6.) |
где
- количество лучей проходящих от противостоящего здания через световые проёмы в расчётную точку на поперечном разрезе помещения, принято 5,
- количество лучей проходящих от противостоящего здания через световые проёмы в расчётную точку на плане помещения, принято 6.
Расчёт:
= 0,56,
= 0,42,
= 0,239.
Расчётное значение КЕО больше нормируемого, поэтому при заданных размерах оконных проёмов обеспечивается достаточная освещённость рабочего места.
6.1.8 Организация рабочего места
При размещении ВТ на рабочем месте согласно ГОСТ 12.2.032-78 учитываются границы полей зрения оператора, которые определяются движениями глаз и головы. Различают зоны зрительного наблюдения в вертикальной плоскости, ограниченные определенными углами, в которых располагаются экран ВТ (40-60 ), пюпитр (35-45 ) и клавиатура. (рис. 6.3.)
Рис.6.3. Зоны зрительного наблюдения в вертикальной плоскости
При организации рабочего места учитываются антропометрические данные операторов, а также предусматривается соответствующие размещение элементов оборудования в зависимости от характера выполняемой работы. Зоны для выполнения ручных операций и размещения органов управления показаны на рис.6.4.
Высота сидения от пола должна регулироваться в пределах 42-55 см. Зависимость высоты рабочей поверхности от роста человека показана на рис.6.5. По желанию оператора устанавливается подставка для ног размером 40х30х15 см и углом наклона 0-20 с нескользящим покрытием и неперемещаемая по полу.
Рис. 6.4. Зоны для выполнения ручных операций и размещения органов управления
1-зона для размещения часто используемых органов управления; 2-зона для размещения часто используемых органов управления; 3-зона для размещения редко используемых органов управления
Рост человека, мм Рост человека, мм
Рис. 6.5. Номограмма зависимости высоты рабочей поверхности для разных видов работ (1-4), пространства для ног (5) и высоты рабочего сиденья (6) от роста человека
При постоянной работе (рис.6.6) экран должен быть расположен в центре поля обзора, документы слева на столе или на специальной подставке. Рабочий стол должен иметь стабильную конструкцию. Плоскость стола выбирают в зависимости от размера документов. При больших размерах документов она должна быть 160х90 см. Плоскость стола, а также сидение оператора должны регулироваться по высоте. Высоту плоскости стола необходимо регулировать в диапазоне 65-85 см или 68-84 см. При этом высота от горизонтальной линии зрения до рабочей поверхности стола при выпрямленной рабочей позе должна быть 45-50 см.
Рис. 6.6. Расположение элементов оборудования ВТ при постоянной работе с экраном
6.2 Пожарная безопасность
В современных ЭВМ имеется высокая плотность размещения элементов электронных схем. В непосредственной близости друг от друга располагаются соединительные провода, коммуникационные кабели. При протекании по ним электрического тока выдается значительное количество теплоты, что может привести к повышению температуры отдельных узлов до 80-100 С, при этом возможно отклонение изоляции соединительных проводов что, как правило приводит к короткому замыканию, которое сопровождается искрением и ведет к недостаточной надежности и перегрузке элементов электронных схем. В последствии перегреваясь, сгорают с разбрызгиванием искр. Для отбора избыточной теплоты от ЭВМ служат системы вентиляции и кондиционирования воздуха. Однако, мощные разветвления, постоянно действующие системы вентиляции и кондиционирования представляют дополнительную пожарную опасность для ВЦ, так как с одной стороны оно обеспечивает подачи кислорода - окислителя во все помещения, а с другой - при возникновении пожара быстро распространяют огонь и продукты горения во всем помещении и устройствам, с которым связаны воздуховоды.
Напряжение к электроустановкам ВЦ подается по кабельным линиям, которые представляют особую пожарную опасность. Наличие горючего изоляционного материала, вероятных источников зажигания в виде электрических дуг и искр, разветвленности, труднодоступность делают кабельные линии местом наиболее вероятного возникновения и развития пожара.
По взрывной и пожарной опасности помещения и здания подразделяются на категории А,Б,В,Г,Д в зависимости от выполняемых в них технологических процессов, свойств применяемых веществ и материалов, а так же условиями их обработки.
Так как в процессе производства используются горючие вещества и материалы (бумага, магнитные ленты, порошковые картриджи для множительной и оргтехники), которые при взаимодействии с кислородом воздуха могут гореть, то назначаем категорию пожарной безопасности В (ОНТП 24-86, табл.1).
Одной из важных задач пожарной профилактики является защита строительных конструкций от разрушений и обеспечение их достаточной прочности в условиях воздействия высоких температур при пожаре. Учитывая высокую стоимость электронного оборудования ВЦ, а так же категорию их пожарной опасности, здания для ВЦ и части зданий другого назначения, в которых предусмотрено размещение ЭВМ относятся к 1 или 2 ступени стойкости. Для изготовления строительных конструкций используют, как правило кирпич, железобетон, стекло и другие негорючие материалы.
Для предотвращения распространения огня во время пожара с одной части здания на другую устраивают противопожарные преграды в виде стен, перегородок, дверей, окон, люков, клапанов. Особое требование предъявляется к устройству и размещению кабельных коммуникаций. Все виды кабелей прокладываются в металлических газовых агрегатов до распределительных щитов или стоек питания.
Для ликвидации пожаров в начальной стадии применяются первичные средства пожаротушения:
-
внутренние пожарные водопроводы,
-
огнетушители типа ОХП-10, ОХП-11,
-
сухой песок,
-
асбестовые одеяла и др.
В здании ВЦ краны устанавливают в коридорах, на площадках лестничных клеток, у входа, т.е. в доступных и защитных местах. На каждые 100 квадратных метра пола производственных помещений обычно требуется 1-2 огнетушителя (табл. 6.4.). Время действия пенных огнетушителей 50-70с, длина струи 6-8м, кратность пены 5, стойкость 40 мин.
Углекислые огнетушители наполнены сжиженным углекислым газом, находящемся под давлением 6МПа. Для приведения их в действие достаточно открыть вентиль. Углекислый газ выходит в виде снега и сразу превращается в газ.
Таблица 6.4
Примерные нормы первичных средств пожаротушения на действующих промышленных предприятиях и складах
| Помещение, сооружение, установка | Единица измерения, м2 | Углекислые огнетушители ручные ОУ-2, ОУ-5, ОУ-8 | Пенные, химические, воздушно-пенные огнетушители | Войлок, кошма или асбест (1x1, 2x1.5, 2x2 м) |
| вычислитель-ные центры | 100 | 1 | 1 | 1 |
Порошковые огнетушители применяются для тушения горящих щелочных металлов. Выброс порошкового заряда из баллона производится с помощью сжатого воздуха, подаваемого из баллончика. Стационарные пожаротушительные установки представляют собой неподвижно смонтированные аппараты, трубопроводы и оборудование, которые предназначаются для подачи огнегасительных средств к местам загорания.















