47488 (588485), страница 3
Текст из файла (страница 3)
Для обнаружения и исправления ошибки составим аналогичные про-верки на четность контрольных сумм, результатом которых является двоичное (n-k) -разрядное число, называемое синдромом и указывающим на положение ошибки, т. е. номер ошибочной позиции.
1) к1 b3 b5 b7 b9 b11 = 110111 =1
2) к2 b3 b6 b7 b10 b11 = 110101 =0
3) к3 b5 b6 b7 b12 = 10011 =1
4) к4 b9 b10 b11 b12 = 11011 =0
Обнаружена ошибка в разряде кодовой комбинации с номером 0101, т. е. в 5 -м разряде. Для исправления ошибки необходимо проинвертировать 5 -й разряд в кодовой комбинации.
Рис. 1. Схема кодера -а и декодера –б для простого (7, 4) кода Хэмминга
Рассмотрим применение кода Хэмминга. В ЭВМ код Хэмминга чаще всего используется для обнаружения и исправления ошибок в ОП, памяти с обнаружением и исправлением ошибок ECC Memory (Error Checking and Correcting). Код Хэмминга используется как при параллельной, так и при последовательной записи. В ЭВМ значительная часть интенсивности потока ошибок приходится на ОП. Причинами постоянных неисправностей являются отказы ИС, а случайных изменение содержимого ОП за счет флуктуации питающего напряжения, кратковременных помех и излучений. Неисправность может быть в одном бите, линии выборки разряда, слова либо всей ИС. Сбой может возникнуть при формировании кода (параллельного), адреса или данных, поэтому защищать необходимо и то и др. Обычно дешифратор адреса встроен в м/схему и недоступен для потребителя. Наиболее часто ошибки дают ячейки памяти ЗУ, поэтому главным образом защищают записываемые и считываемые данные.
Наибольшее применение в ЗУ нашли коды Хэмминга с dmin=4, исправляющие одиночные ошибки и обнаруживающие двойные.
Проверочные символы записываются либо в основное, либо специальное ЗУ. Для каждого записываемого информационного слова (а не байта, как при контроле по паритету) по определенным правилам вычисляется функция свертки, результат которой разрядностью в несколько бит также записывается в память. Для 16 -ти разрядного информационного слова используется 6 дополнительных бит (32- 7 бит, 64 –8 бит). При считывании информации схема контроля, используя избыточные биты, позволяет обнаружить ошибки различной кратности или исправить одиночную ошибку. Возможны различные варианты поведения системы:
-
автоматическое исправление ошибки без уведомления системы;
- исправление однократной ошибки и уведомление системы только о многократных ошибках;
- не исправление ошибки, а только уведомление системы об ошибках;
Модуль памяти со встроенной схемой исправления ошибок –EOS 72/64 (ECC on Simm). Аналог микросхема к 555 вж 1 -это 16 разрядная схема с обнаружением и исправлением ошибок (ОИО) по коду Хэмминга (22, 16), использование которой позволяет исправить однократные ошибки и обнаружить все двух кратные ошибки в ЗУ.
Избыточные (контрольные) разряды позволяют обнаружить и исправить ошибки в ЗУ в процессе записи и хранения информации.
В составе ВЖ-1 используются 16 информационных и 6 контрольных разрядов. (DB - информационное слово, CB - контрольное слово).
При записи осуществляется формирование кода, состоящего из 16 информационных и 6 контрольных разрядов, представляющих результат суммирование по модулю 2 восьми информационных разрядов в соответствии с кодом Хэмминга. Сформированные контрольные разряды вместе с информационными поступают на схему и записываются в ЗУ.
(22,16)
4 схе(72,64)

Рис.2. Схема контроля
При считывании шестнадцатиразрядное слово декодируется, восстанавливаясь вместе с 6 разрядным словом контрольным, поступают на схему сравнения и контроля. Если достигнуто равенство всех контрольных разрядов и двоичных слов, то ошибки нет.
Любая однократная ошибка в 16 разрядном слове данных изменяет 3 байта в 6 разрядном контрольном слове. Обнаруженный ошибочный бит инвертируется.
Список Литературы
-
Гриценко В.М, Недвоичные арифметические корректирующие коды, Пробл. передачи информ., 5:4 (1969), 19–27
-
Злотник Б.М. Помехоустойчивые коды в системах связи.—M.: Радио и связь, 1989.—232 c.
-
Кловский Д.Д. Теория передачи сигналов. –М.: Связь, 1984.
-
Ковалгин Ю.А., Вологдин Э. И. Цифровое кодирование звуковых сигналов. Издательство: Корона-Принт, 2004. – 240с.
-
Колесник В.Д., Полтырев Г.Ш. Курс теории информации. М.: Наука, 2006.
-
Микропроцессорные кодеры и декодеры/В.М. Муттер, Г.А. Петров и др.—М.: Радио и связь, 1991.—184 с.
-
Питерсон У., Коды, исправляющие ошибки, пер. с англ., М., 1964.
-
Семенюк В.В. Экономное кодирование дискретной информации. – СПб.: СПбГИТМО (ТУ), 2001