24917 (586529), страница 2
Текст из файла (страница 2)
В конце 19 века М. Бауэром была предложена новая классификация драгоценных камней, которая долгое время пользовалась популярностью у минералогов и специалистов-ювелиров. Классификация М. Бауэра была позднее дополнена и расширена А.Е. Ферсманом. Ювелирные и поделочные камни подразделены в ней на три группы: I - драгоценные камни (самоцветы), II - поделочные (цветные камни), III - драгоценные камни органогенные. Внутри группы в зависимости от ценности камни разделялись на порядки. В I группу вошли в основном прозрачные бесцветные или красиво окрашенные камни и часть полупрозрачных цветных камней, используемых в ограненном виде. Ко II группе отнесен ряд минералов и горных пород, пригодных для кабошонирования и для различных поделок. Ниже приводится классификация М.Бауэра – А.Е.Ферсмана.
Приведенной классификацией длительное время пользовались в СССР и за рубежом [12]. Однако она не лишена ряда недостатков. Так, некоторые минералы одновременно отнесены к разным порядкам (горный хрусталь, агат, дымчатый кварц, лазурит и др.), в ряде случаев приведены групповые минералогические наименования одновременно с определенными, частными названиями (гранат и альмандин с уваровитом, берилл и аквамарин, халцедон и агат, сердолик, хризопраз и т.д.). К группе поделочных камней отнесен ряд минералов, которые в настоящее время имеют относительно высокую ценность, считаются полудрагоценными и широко применяются в ювелирном деле (авантюрин, малахит, амазонит, горный хрусталь, дымчатый кварц, розовый кварц, лазурит и др.). В настоящее время практическая ценность многих драгоценных камней существенно изменилась, в связи с чем классификация Бауэра-Ферсмана устарела [5].
В 1973 г. Е.Я. Киевленко предложил модернизированную классификацию цветных камней, в которой учтена их рыночная стоимость и применяемость в ювелирных изделиях и предметах художественно-камнерезного промысла. Киевленко выделяет три группы камней: ювелирные (драгоценные), ювелирно – поделочные и поделочные.
Классификация М.Бауэра – А.Е.Ферсмана
П е р в а я г р у п п а
I порядок: алмаз, изумруд, синий сапфир, рубин
II порядок: александрит, благородный жадеит, оранжевый, желтый, фиолетовый и зеленый сапфир, благородный черный опал
III порядок: демантоид, благородная шпинель, благородный белый и огненный опал, аквамарин, топаз, родонит, лунный камень (адуляр), красный турмалин
IV порядок: синий, зеленый, розовый и полихромный турмалин, благородный сподумен ( кунцит, гидденит), циркон, желтый, зеленый, золотистый и розовый берилл, бирюза, хризолит, аметист, хризопраз, пироп, альмандин, цитрин
В т о р а я г р у п п а
I порядок: раухтопаз, гематит-кровавик, янтарь-сукцинит, горный хрусталь, жадеит, нефрит, лазурит, малахит, авантюрин
II порядок: агат, цветной халцедон, кахолонг, амазонит, родонит, гелиотроп, розовый кварц, иризирующий обсидиан, обыкновенный опал, лабрадор, беломорит и др. непрозрачные иризирующие шпаты
Т р е т ь я г р у п п а
Яшмы, письменный гранит, окаменелое дерево, мраморный оникс, лиственит, обсидиан, гагат, джеспилит, селенит, флюорит, авантюриновый кварцит, агальматолит, рисунчатый кремень, цветной мрамор
Японский исследователь Судзуки предложил несколько иную классификацию драгоценных камней. В ней драгоценные камни разделены на три группы: 1 – истинные драгоценные, II – стандартные драгоценные и III – полудрагоценные. В 1 группу входят алмаз, корунд, берилл, шпинель, александрит, циркон, топаз, гранат, опал и бирюза; во II группу – эвклаз, фенакит, оливин, турмалин, сподумен, бенитоит, данбурит, андалузит, ставролит, аксинит, кордиерит, кианит, везувиан, сфен, эпидот, пренит, диопсид. В III группу – лазурит, родонит, нефрит, жадеит, малахит, янтарь, спекулярит, флюорит, полевые шпаты и кварц [14].
Кроме приведенных, за рубежом известны классификации драгоценных камней Синканкаса, Р. Вебстера, Перла и ряда других исследователей. Каждая классификация характеризуется своими особенностями и отличиями. По мнению авторов, кроме основных принципов, положенных в основу классификаций, имеется ряд внешних факторов – сложившиеся традиции, мода на камень, наличие драгоценных камней на рынке, открытие новых месторождений драгоценных камней и т.п. Поэтому отдельные камни в разных классификациях могут занимать то или иное место, хотя общий характер классификаций в основном совпадает.
С развитием ювелирной и камнерезной промышленности в 1970-1980 гг. стало необходимым создать промышленную классификацию ювелирных и поделочных камней, пригодную для практической работы этой новой отрасли. Всесоюзным научно-исследовательским институтом ювелирной промышленности (ВНИИ ювелирпром) была разработана такая классификация. В ней все ювелирные и поделочные камни были разделены на три типа: ювелирные, ювелирно-поделочные и поделочные, которые в свою очередь по прозрачности, твердости (по шкале Мооса) и другим свойствам подразделяются на подтипы и группы [5].
2. Описание наиболее известных драгоценных камней
2.1 Драгоценные камни I порядка
АЛМАЗ Название минерала происходит от греческого слова " adamos" неодолимый, несокрушимый (синонимы: адамант, демант, диамант). С течением времени слово "адамос" - приобретает новую форму "алмаз" [15]. Ограненные прозрачные алмазы ювелирного качества называют бриллиантами (Рис. 1). Термин появился в XVII веке после изобретения бриллиантовой огранки. С древних времен алмаз считался драгоценным камнем высшего класса. Этому минералу приписывали многие мистические свойства. В Индии и Иране существовал обычай - в день, когда новорожденному дают имя, отец сыпал ему на голову щепотку алмазной пыли, обеспечивая этим ребенку здоровье, благополучие и долгую жизнь. В Древней Индии считали, что алмазы образованы из «пяти начал природы» - земли, воды, неба, воздуха и энергии. Индусы делили алмазы на несколько каст: брахманы (самые дорогие) – бесцветные, белые, кшатрии – слегка окрашенные, вайшье – зеленоватые и шудры – серые [16].
Рис. 1. Изделие с бриллиантами [3]
В Европу алмазы попали, видимо, в VI-V вв. до н. э. В Британском национальном музее хранится бронзовая статуэтка с двумя необработанными алмазами вместо глаз. Она найдена в Древней Греции и относится к V веку до н. э.
На Руси слово «алмаз» впервые упомянуто в книге Афанасия Никитина «Хождение за три моря» (1466-1472 гг.)
Алмаз кристаллизуется в кубической сингонии, гексаоктаэдрическом виде симметрии. В его кристаллической решетке атомы углерода, слагающие структуру алмаза, прочно объединены силами ковалентных связей.
Кристаллы алмаза разнообразны: помимо плоскогранных распространены кривогранные формы, наряду с изометрическими часто встречаются деформированные, удлиненные или уплощенные, а также со ступенчатыми или полицентрическими гранями. Плоскогранные октаэдры с зеркально ровными гранями и острыми ребрами довольно редки, часто на гранях развиваются различные фигуры травления (треугольники и др.), ребра округляются. Благодаря ступенчатому или полицентрическому строению граней кристаллы могут принимать вид псевдоромбододекаэдров или псевдокубов [5].
В 1813 году была обнаружена разновидность алмазов карбонадо. Название она получила от португальского «carbonados» - карбонатизированный. Карбонадо обладают очень большой прочностью, поэтому они используются для буровых коронок, предназначенных для бурения особо твердых горных пород. Применяется карбонадо и для правящего инструмента.
В Африке встречена разновидность карбонадо с магнитными свойствами, названная стюартитом или стевартитом. В стюартите много включений магнетита, чем и обусловлены его магнитные свойства [2].
В прошлом веке также была обнаружена новая разновидность поликристаллических образований алмаза ударно-взрывного происхождения. Такие алмазы приурочены к своеобразным кольцевым воронкообразным структурам – астроблемам, которые получаются при ударе космического тела о земную кору. Возникшие при этом высокие температура и давление способствовали образованию алмазов. Размеры угловатых, неправильной формы агрегатов не превышают, как правило, 1-2 мм. Алмазы непрозрачные, черные, желтоватые или зеленоватые. Часто строение агрегатов слоистое или волокнистое.
Алмазы применяют в технике, что объясняется их высокой твердостью и износостойкостью. Однако у алмаза наблюдается анизотропия твердости, выражающаяся в том, что на разных гранях и в различных направлениях твердость несколько отличается. Это связано с особенностями структуры. Наименее износоустойчивыми направлениями, по которым и обрабатывают алмаз, являются следующие: в плоской сетке куба – направления, параллельные сторонам кубических граней, в плоской сетке октаэдра – направления, соответствующие высотам треугольных граней. В свою очередь, твердость октаэдрических граней больше твердости ромбододекаэдрических и еще выше – твердость кубических граней [5].
Теоретически плотность алмаза составляет 3,515 г/см3. Однако встречаются алмазы, у которых наблюдаются значительные отклонения от средней величины плотности. Это связано с наличием различных включений, трещин, пор, а также агрегативным строением. Наименьшую плотность имеют карбонадо (до 3,4 г/см3). Плотность прозрачных с зелеными пятнами пигментации или дымчато-коричневых алмазов несколько ниже, чем у бесцветных или желтых, но эти колебания выражаются в тысячных, реже в сотых долях.
Алмаз имеет совершенную спайность, излом ровный, ступенчатый, раковистый [2].
Алмаз характеризуется высокой теплопроводностью: она в два-пять раз выше, чем у металлов. Удельная теплоемкость алмаза в три раза выше, чем твердых сплавов. Высокая теплопроводность позволяет быстрее отводить тепло с поверхности обрабатываемых изделий.
При трении алмаза о шерсть он заряжается электричеством.
Алмаз является диэлектриком, вместе с тем отдельные разновидности алмаза (например, голубой или синий) могут обладать полупроводниковыми свойствами.
Температура плавления алмаза около 4 0000С. При нагревании алмаз сгорает, образуя углекислый газ. В струе кислорода он горит голубым пламенем при температуре коло 7200С, в атмосфере воздуха температура горения 8500С. При нагревании без доступа воздуха поверхность алмаза графитизируется при температуре 1 0000С, при более высокой температуре он полностью переходит в графит. В условиях защитной среды (в атмосфере азота или инертных газов, в вакууме, а также в восстановительной среде – водорода, ацетилена или окиси углерода) алмаз не графитизируется даже при нагревании до 1 150- 1 2000С.
Алмаз состоит из углерода (96-99,8%). Кроме того, в количестве от тысячных до 0,2 - 0,3% в нем содержатся примеси химических элементов – азота, кислорода, алюминия, бора, кремния, марганца, меди, а также примеси железа, никеля, титана, цинка и др. Встречаются включения графита, оливина, пиропа, хромита, хромдиопсида, энстатита и др [2].
Рис. 2. Ограненный алмаз синего цвета [5]
Совершенно бесцветные алмазы довольно редки. Обычно у них наблюдается какой-либо оттенок (нацвет). Встречаются интенсивно окрашенные желтые, оранжевые, зеленые, розовые, коричневые, серые, черные, голубые и синие кристаллы (Рис. 2). Среди окрашенных алмазов большой известностью пользуются сапфирово-синий алмаз «Хоуп», «Голубой Тавернье» (масса 44,5 кар) яблочно-зеленый «Зеленый дрезденский» (41 кар), янтарного цвета «Алмаз Альберта» (102 кар). Всемирно известны черные алмазы из Баии (350 кар) и графини Орловой (67,5 кар) [5].
Окраска алмаза зависит от различных дефектно-примесных центров и включений. Зеленые пятна пигментации, окрашивающие поверхность кристаллов в зеленоватый или голубоватый цвет, появляются в результате природного радиоактивного облучения. При нагревании в процессе метаморфизма они переходят в желтый цвет. Желтые пятна пигментации наблюдаются на алмазах из древних россыпей. Однако встречаются алмазы с синей и голубой окраской, равномерно распределенной по всему кристаллу. Предполагают, что этот тип окраски обусловлен вхождением в структуру алмаза бора. Очень распространены дымчато-коричневые и реже розовато-сиреневые алмазы, окраска которых связана с образованием дефектов на плоскостях скольжения. Молочно- белая окраска объясняется наличием мелкодисперсных включений граната по внешней части кристалла, а серая и черная – включениями графита [8].
Алмаз при обычных температурах химически инертен. Кислоты, даже самые сильные, на него не действуют. При высоких температурах алмаз приобретает химическую активность.
Показатель преломления алмаза высокий (2,417), этим объясняется его яркий, алмазный блеск. Дисперсия алмаза 0,063, что намного выше, чем у других минералов. Высокой дисперсией объясняется «игра» бриллиантов всеми цветами радуги.
Кристаллы алмаза оптически изотропны, однако, из-за присутствия различных дефектов под микроскопом практически всегда обнаруживается двупреломление, узоры которого различны.