4891 (585171), страница 6
Текст из файла (страница 6)
Этилен — бесцветный газ, способный растворяться в воде: его растворимость при 0°С составляет 0,32 мг/л. Этилен используется как исходный продукт при синтезе спиртов, полиэтилена, оксида этилена, этиленгликоля, дихлорэтана и др. По характеру токсического действия этилен — сильный наркотик. При длительном введении водных растворов этилена имеет место поражение печени, сдвиги со стороны крови. Порог токсического действия в экспериментах на животных установлен при концентрации 1,5 мг/л; в концентрациях выше 0,5 мг/л этилен придает воде посторонний запах, и в концентрациях больше 10 мг/л нарушает процессы самоочищения водоема от органических веществ хозяйственно-бытовых сточных вод. ПДК этилена в водных объектах хозяйственно-питьевого назначения установлена по органолептическому признаку действия на уровне 0,5 мг/л.
Пропилен — бесцветный газ; растворимость пропилена в воде составляет 0,835 мг/л при 20°С. В хронических опытах на животных пропилен вызывает аналогичную этилену картину интоксикации. ПДК установлена по влиянию на запах воды на уровне 0,5 .мг/л [14].
1.6.1 Содержание примесей в сточных водах
Как уже указывалось, в процессе переработки и очистки нефти в сточные воды наряду с основными нефтепродуктами попадает много соединений, присутствующих в нефти в виде примесей. Из них наибольшее гигиеническое значение имеют сернистые соединения и фенол. Сернистые соединения содержатся в больших концентрациях в отработанных сточных водах, образующихся в результате щелочной очистки бензинов, керосинов и сжиженных газов. Важнейшими из них являются сульфиды и меркаптаны.
Сернистые соединения попадают в водоемы со сточными водами НПЗ в виде свободного и связанного сероводорода (сульфиды) и продуктов их окисления. Сульфиды при поступлении в водоем диссоциируют с образованием гидросульфидных ионов HSˉ, которые носят название связанного сероводорода. Связанный и свободный сероводород в водоеме окисляются с образованием сульфат-ионов; промежуточными продуктами при этом являются сульфитные и тиосульфатные ионы. Кроме того, могут образовываться коллоидная сера, оксиды серы, тритионовые и политионовые кислоты.
Процесс окисления сернистых соединений в воде начинается с первых же минут. В присутствии избытка кислорода сероводород (свободный и связанный) окисляется полностью в течение первых суток. Промежуточные продукты окисляются значительно медленнее, так как их окисление обусловлено биохимическими процессами, протекающими в воде [17].
Установлена зависимость интенсивности окисления в водной среде сернистых соединений от концентрации растворенного кислорода, рН и температуры, а также от процессов перемешивания и наличия тионовых бактерий. Расчетная величина необходимых затрат кислорода на полное окисление сероводорода до сульфатов полностью совпадает с величиной, полученной в прямом опыте. Так, 1 мг кислорода расходуется на окисление 0,53 мг сероводорода до сульфатов или на окисление 1,09 мг сероводорода до тиосульфатов.
Особенность поведения сульфидов в водной среде обусловливает выраженное вредное влияние их на санитарный режим водоема — быстрое связывание кислорода, растворенного в воде. Сульфиды должны полностью отсутствовать в воде, а следовательно, и в сточных водах, чтобы сохранить надлежащий кислородный режим в воде водоемов. Сульфиды вредно влияют и на органолептические свойства воды, придавая ей в концентрациях 0,1—0,3 мг/л запах интенсивностью 1—2 балла.
Меркаптаны — простейшие сернистые соединения, представляют собой летучие бесцветные жидкости плотностью ниже единицы с очень резким отталкивающим запахом. Меркаптаны легко растворяются в щелочах, образуя соединения, в которых водород замещен металлом (меркаптиды); в воде растворяются плохо. Под действием слабых окислителей или воздуха меркаптаны постепенно окисляются в дисульфиды.
Применение метода определения меркаптанов в воде чувствительностью 0,001—0,002 мг/л позволило установить концентрацию меркаптана 0,001 мг/л в качестве предельной по ее влиянию на запах воды. Эта концентрация меркаптана не влияет на санитарный режим водоема и не вызывает отрицательного токсического действия на организм [17].
Фенолы в чистом виде представляют собой бесцветные кристаллические вещества. Одноатомные фенолы (оксибензол, крезолы) хорошо растворяются в воде, придавая ей резкий запах и привкус. Порог восприятия запаха фенола составляет 0,025—1,0 мг/л. При обработке воды хлором фенолы резко усиливают запах за счет образования хлорфенольных соединений. Запах хлорфенола стабилен, не обладает привыкаемостью. Эта способность фенолов и положена в основу его гигиенического нормирования в воде водоемов, используемых для хозяйственно-питьевых целей. Минимальная концентрация фенола, образующая при хлорировании запах интенсивностью 1 балл, составляет 0,001 мг/л [16].
Наряду с влиянием на органолептические свойства воды одноатомные фенолы, воздействуют и на санитарный режим водоема, потребляя на окисление кислород, растворенный в воде. Было установлено, что при длительном введении с водой одноатомных фенолов в концентрации около 800 мг/л в организме животных развивается хроническая интоксикация, проявляющаяся в дистрофическом поражении почек, печени, изменениях со стороны сердечно-сосудистой системы, центральной нервной системы и др. Эффект совместного действия двух — трех фенолов близок к сумме эффектов действия отдельных веществ.
Для водоемов рыбохозяйственного значения ПДК фенолов установлена на уровне 0,001 мг/л по влиянию на качество мяса рыбы (рыбохозяйственный признак).
При оценке возможного загрязнения окружающей среды отходами НПЗ нельзя забывать их роли как источников канцерогенов особенно в водных объектах. Содержание их в сточных водах зависит от температуры, при которых происходит возгонка сырья. Как известно, среди большой группы полициклических ароматических сое динений в качестве индикатора канцерогенной загрязненности окружающей среды принимается бенз[а]пирен (3,4-бензпирен). Хотя в сточных водах НПЗ сравнительно меньше 3,4-бензпирена, чем в сточных водах других предприятий по термической переработке твердого и жидкого топлива, однако и в них обнаруживалось до 0,292 мг/л 3,4-бензпирена. Как показали исследования, 3,4-бензпирен обладает значительной стабильностью и растворимостью в водной среде, что делает возможным распространение его (и других канцерогенных углеводородов) на большие расстояния вниз по течению от источника загрязнения. 3,4-Бензпирен накапливается в донных отложениях в планктоне, водорослях, рыбных организмах [1].
1.6.2 Содержание диэмульгаторов в сточной воде
Как известно, основным источником загрязнения сточных вод НПЗ является процесс обезвоживания и обессоливания нефти. Решающее значение при этом имеет качество применяемых деэмульгаторов, представляющих собой поверхностно-активные вещества (ПАВ).
ПАВ — это вещества, адсорбирующиеся на поверхности раздела соприкасающихся тел и образующие на этой поверхности адсорбционный молекулярный слой. Даже очень малые добавки ПАВ могут резко изменить условия молекулярного взаимодействия на поверхности раздела, скорости фазовых превращений и перехода из одной фазы в другую. В химическом отношении ПАВ могут быть разделены на ионогенные и неионогенные; первые в свою очередь делятся на анионоактивные и катионоакивные.
Анионоактивные ионогенные ПАВ при растворении в воде диссоциируют на положительно заряженный катион и отрицательно заряженный анион. Носителем поверхностно-активных свойств у анионоактивных ПАВ является анион. Представителями анионоактивных ПАВ является алкилбензосульфонат и алкилсульфаты. К ним относятся применяемые ранее на НПЗ сульфонат (соли сульфонафтеновых кислот) и деэмульгатор НЧК (нейтрализованный черный контакт).
Катионоактивные ПАВ также диссоциируют на катионы и анионы, но поверхностно-активными свойствами обладают катионы, представляющие собой положительно заряженную группу. Отрицательными свойствами анионоактивных ПАВ (в частности, НЧК и сульфоната) является их способность реагировать с находящимися в воде солями кальция и магния и образовывать осадки, способствующие шламообразованию при деэмульгации нефти. При этом образуются стойкие эмульсии нефти, не поддающиеся ни отстаиванию, ни всплыванию. Обессоливание высокосмолистых нефтей требует больших расходов НЧК (до 3 кг на 1 т нефти). При переработке такой нефти получающиеся сточные воды не поддаются очистке на нефтеловушках и кварцевых фильтрах.
НЧК плохо окисляется на биологических очистных сооружениях и в большой степени определяет характер загрязнения биологически очищенных сточных вод НПЗ (в настоящее время НЧК в процессе подготовки нефти не используется).
На смену малоэффективных и плохо разрушающихся на очистных сооружениях ионогенных деэмульгаторов в нефтеперерабатывающей промышленности стали применять неионогенные ПАВ. Неионогенные ПАВ не диссоциируют в водных растворах; их молекула проявляет поверхностную активность как целая электролитная единица. Их расход значительно ниже, они хорошо растворяются в воде, не образуют стойких нефтяных эмульсий и соединений с солями и кислотами, содержащимися в воде и нефти. Так, расход ОП-10 составляет лишь 40—50 г на 1 т нефти, причем производительность установок обезвоживания и обессоливания повышается на 40—50% по сравнению с применением НЧК.
С санитарно-гигиенической точки зрения очень важным преимуществом неионогенных деэмульгаторов является то, что они не образуют стойких нефтяных эмульсий, не поддающихся разрушению и очистке [3].
1.7 Загрязнение почвы
В настоящее время количество промышленных выбросов, поступающих в биосферу, превышает в десятки и сотни раз уровень некоторых веществ, естественно циркулирующих в ней. В силу наличия органной адсорбционной поверхности, почва служит резервуаром, в котором загрязнения могут накапливаться в большом количестве. Загрязнение почвенного покрова происходит в результате адсорбции атмосферных выбросов, складирования и захоронения отходов производств.
Образующиеся в процессе переработки нефти углеводороды, особенно ароматические, обладают большей токсичностью, чем природная нефть. При этом содержание ароматических углеводородов в количестве 10—25 мг/кг почвы может привести к угнетению некоторых микробиологических процессов, происходящих в ней. Прежде всего, нарушается процесс нитрификации, ацетиленовой азотфиксации и угнетаются актиномицеты [30].
Изучение загрязнения почвы выбросами нефтехимических предприятий и накопление специфических ингредиентов нефтепереработки в сельскохозяйственных культурах было начато в институте гигиены и профзаболеваний в 1976 г. Контроль за содержанием специфических компонентов в почвенном покрове и сельскохозяйственных растениях осуществлялся в основном в гг. Уфа, Салават и Стерлитамак [29].
Общеизвестно, что такие компоненты выбросов НХЗ, как сероводород и окислы в процессе круговорота серы в пригороде с осадками попадают в почву, где адсорбируются почвенным поглощающим комплексом. Все сернистые соединения нефти проходят стадию образованию сульфатов.
Поэтому повышенное содержание сульфатов в почве, по-видимому, свидетельствует о загрязнении почвы выбросами НХЗ [7].
Для климатических условий Башкирии, где продолжительность снежного периода составляет 5—6 месяцев, снег является хорошим индикатором загрязнения окружающей среды. В нем накапливаются такие выбросы НХЗ, как углеводороды, нефти оксиды азота, серы, фенол, аммиак, а также тяжелые металлы, вымываемые снегом из атмосферы в районе расположения тепловых электростанций. С гигиенических позиций качественный состав снежного покрова имеет большое значение, т. к. во время снеготаяния может формировать загрязнение поверхностных вод. Кроме того, по степени загрязненности снеговых проб можно в определенной степени судить о санитарном состоянии атмосферного воздуха [2].
Таким образом, исследования почвы в районах размещения предприятий нефтепереработки и нефтехимии показали, что она загрязняется нефтепродуктами и выбросами этих предприятий в радиусе до 3-х км и глубиной до 60—80 см. В километровой зоне концентрации загрязняющих почву химических веществ значительно выше фоновых и предельно допустимых уровней по отдельным ингредиентам достигающих десятки и сотни ПДК. Исходя из этого, в 3-х километровой санитарно-защитной зоне
предприятий недопустимо размещение баз отдыха и лечения, Размещение коллективных садов и сельхозугодий. Эти территории должны быть использованы для выращивания древесных и кустарниковых насаждений с высокой газоустойчивостью для создания светофильтров — зеленой защиты от химических загрязнений .
Таким образом, нефтеперерабатывающие и нефтехимические предприятия оказывают неблагоприятное воздействие на все объекты окружающей среды — атмосферный воздух, водные объекты, почву загрязняя их отходами своего производства [12].
Загрязнение почвенного покрова вокруг НХЗ происходит за счет адсорбции атмосферных выбросов и фильтрации химических веществ из загрязненных сточными водами водных объектов, а также в результате складирования и захоронения отходов производств. Промышленные отходы состоят, в основном, из шлаков, кислого гудрона, растворов щелочей, отработанных катализаторов и др. Основными загрязнителями почвенного покрова являются нефтепродукты, сульфаты, ароматические углеводороды (бензол, толуол, стирол, альфаметилстирол, ортоксилол, этилбензол, изопропилбензол, бензин), бензапипрен, азот аммонийный. В радиусе 1 км от НХЗ загрязнители обнаруживаются на глубине 60—80 см от поверхности почвы [20].
1.8 Влияние загрязнения на человека
Имеются многочисленные научные данные, свидетельствующие о связи легочной, онкологической, кожной и другой паталогии с характером и уровнем загрязнения воздуха. Многократно подтверждена, например, зависимость обострения хронического бронхита от уровня загрязнения воздуха сернистым газом, характеризуемая следующими данными:
при концентрации сернистого газа 0,13 мг/м3 процент обострения хронического бронхита (в человеко-днях) 13,0, при концентрации 0,78 мг/м3 — 26,5.