183762 (584788), страница 5
Текст из файла (страница 5)
2) Метод потенциалов
Примем некоторые обозначения: i - индекс строки j - индекс столбца m - количество поставщиков n - количество потребителей Xi,j - перевозка между поставщиком Ai и потребителем Bj.
Поставщик | Потребитель | Запасы груза | |||||||||||||||||||||||||
B1 | B2 | B3 | B4 | B5 | |||||||||||||||||||||||
A1 |
|
|
|
|
| 370 | |||||||||||||||||||||
A2 |
|
|
|
|
| 450 | |||||||||||||||||||||
A3 |
|
|
|
|
| 480 | |||||||||||||||||||||
Потребность | 300 | 280 | 330 | 290 | 100 |
|
Транспортная задача имеет закрытый тип, так как суммарный запас груза равен суммарным потребностям. Находим опорный план по правилу северо-западного угла: Введем некоторые обозначения: Ai* - излишек нераспределенного груза от поставщика Ai Bj* - недостача в поставке груза потребителю Bj
Помещаем в клетку (1,1) меньшее из чисел A1*=370 и B1*=300 Так как спрос потребителя B1 удовлетворен, то столбец 1 в дальнейшем в расчет не принимается Помещаем в клетку (1,2) меньшее из чисел A1*=70 и B2*=280 Так как запасы поставщика A1 исчерпаны, то строка 1 в дальнейшем в расчет не принимается Помещаем в клетку (2,2) меньшее из чисел A2*=450 и B2*=210 Так как спрос потребителя B2 удовлетворен, то столбец 2 в дальнейшем в расчет не принимается Помещаем в клетку (2,3) меньшее из чисел A2*=240 и B3*=330 Так как запасы поставщика A2 исчерпаны, то строка 2 в дальнейшем в расчет не принимается Помещаем в клетку (3,3) меньшее из чисел A3*=480 и B3*=90 Так как спрос потребителя B3 удовлетворен, то столбец 3 в дальнейшем в расчет не принимается Помещаем в клетку (3,4) меньшее из чисел A3*=390 и B4*=290 Так как спрос потребителя B4 удовлетворен, то столбец 4 в дальнейшем в расчет не принимается Помещаем в клетку (3,5) меньшее из чисел A3*=100 и B5*=100
Поставщик | Потребитель | Запасы груза | ||||||||||||||||||||||||
B1 | B2 | B3 | B4 | B5 | ||||||||||||||||||||||
A1 |
|
|
|
|
| 370 | ||||||||||||||||||||
A2 |
|
|
|
|
| 450 | ||||||||||||||||||||
A3 |
|
|
|
|
| 480 | ||||||||||||||||||||
Потребность | 300 | 280 | 330 | 290 | 100 |
|
Целевая функция F=11320
Решаем задачу методом потенциалов:
Этап 1
Полагая потенциал U1=0, определяем остальные потенциалы из соотношения Ui+Vj=Ci,j(i=1..m, j=1..n), просматривая все занятые клетки. Потенциалы Ui, Vj: U1=0 V1=C1,1-U1= 14 V2=C1,2-U1= 8 U2=C2,2-V2= 2 V3=C2,3-U2= 5 U3=C3,3-V3= 3 V4=C3,4-U3= 1 V5=C3,5-U3= 6 Определяем значения оценок Si,j=Ci,j-(Ui+Vj) для всех свободных клеток (неоптимальные выделены красным цветом) S1,3 = c1,3 - (u1 + v3) = 12. S1,4 = c1,4 - (u1 + v4) = 4. S1,5 = c1,5 - (u1 + v5) = -3. S2,1 = c2,1 - (u2 + v1) = 5. S2,4 = c2,4 - (u2 + v4) = 8. S2,5 = c2,5 - (u2 + v5) = -2. S3,1 = c3,1 - (u3 + v1) = -14. S3,2 = c3,2 - (u3 + v2) = -6. Если имеется несколько клеток с одним и тем же наименьшим значением оценки, то из них выбирается клетка, имеющая наименьший тариф. Наиболее потенциальной является клетка (3,1). Для нее оценка равна -14. Строим для нее цикл, помечая клетки цикла знаками "плюс" и "минус".
Поставщик | Потребитель | Запасы груза | ||||||||||||||||||||||||
B1 | B2 | B3 | B4 | B5 | ||||||||||||||||||||||
A1 |
|
|
|
|
| 370 | ||||||||||||||||||||
A2 |
|
|
|
|
| 450 | ||||||||||||||||||||
A3 |
|
|
|
|
| 480 | ||||||||||||||||||||
Потребность | 300 | 280 | 330 | 290 | 100 |
|
Перемещаем по циклу груз величиной в 90 единиц, прибавляя эту величину к грузу в клетках со знаком "плюс" и отнимая ее от груза в клетках со знаком "минус". В результате перемещения по циклу получим новый план:
Поставщик | Потребитель | Запасы груза | ||||||||||||||||||||||||
B1 | B2 | B3 | B4 | B5 | ||||||||||||||||||||||
A1 |
|
|
|
|
| 370 | ||||||||||||||||||||
A2 |
|
|
|
|
| 450 | ||||||||||||||||||||
A3 |
|
|
|
|
| 480 | ||||||||||||||||||||
Потребность | 300 | 280 | 330 | 290 | 100 |
|
Целевая функция F= 10060