182498 (584426), страница 3

Файл №584426 182498 (Вычисление стаистических показателей) 3 страница182498 (584426) страница 32016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Определяем индекс цен постоянного состава:

Определяем индекс структурных сдвигов:

Взаимосвязь между индексами:

0,85 = 0,8905 ∙ 0,9545

Выводы: На основании полученных результатов по определенным индексам цен можно сделать следующие выводы:

– индекс переменного состава показывает, что средняя цена молока в городе проданного в государственной торговле и на колхозных рынках снизилась на 15%. Это снижение обусловлено изменением цены молока в каждом месте продажи и изменением удельного веса выпускаемого молока. Для того, что бы выявить влияние каждого из этих факторов на динамику средней цены вычислялись индексы постоянного состава и индекс структурных сдвигов.

– индекс постоянного состава показывает, что средняя цена проданного молока уменьшилась на 11% в отчетном периоде по сравнению с базисным за счет изменения цены.

– индекс структурных сдвигов показывает, что средняя цена проданного молока уменьшилась на 4% в отчетном периоде по сравнению с базисным за счет увеличения количества продаваемого молока.

ЗАДАЧА 5.

Имеются следующие данные о норме расхода сырья на единицу изделия:

Таблица 6.

Расход сырья, г

Изготовлено изделий, шт.

До 20

8

20–22

15

22–24

50

24–26

20

Свыше 26

7

итого

100

Определить:

1. Средний размер сырья на одно изделие;

2. Среднее линейное отклонение;

3. Дисперсию и среднее квадратическое отклонение;

4. Коэффициент вариации.

Сделайте выводы.

Теоретическое обоснование

Расчет дисперсии – производят по формуле:

σ2 = Σ (xi - x)2fi / Σ fi

Следовательно, прежде всего необходимо найти отклонения вариант от средней (xi - xi), затем возвести их в квадрат ([(xi - xi)2]) квадраты отклонения взвесить [(xi - xi)2 fi] и просуммировать взвешенные квадраты отклонений [Σ (xi - xi)2fi.]. Полученную сумму разделить на сумму частот (2).

Среднее квадратическое отклонение устанавливают извлечением корня квадратного из значения дисперсии

σ = √ σ2

Расчет средней, дисперсии и среднего квадратического отклонение производя по формулам указанным выше. Однако в качестве вариант в задачах приведены так называемые «открытые» варианты. В начале следует закрыть варианты, а затем, найдя полу сумму интервалов, ввести их в программу в виде усредняемых значений признака xi и fi – частоты повторения каждой варианты.

Среднее линейное отклонение L – есть средняя арифметическая из абсолютных значений отклонений вариант от средней и определяется по формуле:

L=((Xi-X)*fi)/fi

Согласно формуле в начале находят абсолютные отклонения каждой варианты от средней ((Xi-X), а затем каждое абсолютное отклонение взвешивают ((Xi-X)*fi), суммируют взвешенные абсолютные отклонения ((Xi-X)*fi) и это суммы делят на сумму частот (fi).

РЕШЕНИЕ

Для упрощения решения представим его в виде таблицы и для нахождения средней и дисперсии воспользуемся способом моментов:

Таблица 7.

Расход сырья на 1‑цу изделия, г.

Изготовлено изделий, шт.

Середина интервала.

|Х-Х|·f

(X – A)

(X – A)

i

(Х – А)·f

i

(Х – А) 2

i2

(X – A) 2 ·f

i2

До 20

8

19

32

-4

-2

-16

4

32

20 – 22

15

21

30

-2

-1

-15

1

15

22 – 24

50

23

0

0

0

0

0

0

24 – 26

20

25

40

2

1

20

1

20

Свыше 26

7

27

28

4

2

14

4

28

Итого

100

|Х-Х| · f=

130

(X-A)

·f/ i =

3

((X – A) / i) 2·f =

95

Для нахождения средней и дисперсии воспользуемся способом моментов:

Х=m1 · i +A; 2 = i 2 (n ·(m2 – m1 2);

m1= ((X – A) ·f / i))/f; m2= ((X – A) / i) 2·f)/f;

где

m1, m2 – соответственно моменты первого и второго порядка;

i – величина интервала;

А – варианта, имеющая наибольшую частоту;

F – значение весов или частот каждой варианты.

Наиболее часто встречаются изделия с расходом сырья на единицу продукции =23 г. Значит А=23 (г.).

Определим величину интервала (визуально видно, что интервалы имеют равную величину):

I=22–20=24–22=26–24=2 (г.)

На основании расчетов представленных в таблице найдем Х и 2:

m1 = 3/100 = 0,03; m2= 95/100 = 0,95;

Х= 0,03 · 2 + 23= 23,06 (г.)

2 = 4 · (0,95 – 0,03 2) = 3,8

Найдем среднее квадратическое отклонение:

= √3,8 = 1,95 (г.)

2. Определим среднее линейное отклонение:

L= 130 / 100 = 1,3 (г.)

3. Определим коэффициент вариации:

V = 1,3 / 23,06 = 0,056 (5,6%).

Выводы: на основании проведенных расчетов можно сделать следующие выводы:

– средний расход сырья на единицу изделия равен ≈ 23 г.

– среднее квадратическое отклонение показывает, что возможно отклонение от среднего расхода сырья на единицу продукции как в сторону увеличения, так и в сторону уменьшения на 1,95 г., что составляет 5,6% (см. коэффициент вариации).

– среднее линейное отклонение также показывает возможное отклонение от среднего расхода сырья на единицу продукции как в сторону увеличения, так и в сторону уменьшения, но менее точно, чем среднее квадратическое отклонение, и составляет 1,3 г.

ЗАДАЧА 6

Для определения срока службы металлорежущих станков проведено 10%-е выборочное обследование по методу случайного бесповторного отбора, в результате которого получены следующие данные:

Таблица 8.

Срок службы станков, лет

Число станков, шт.

До 4

11

4–6

24

6–8

35

8–10

25

Свыше 10

5

Итого

100

Определить: с вероятностью 0,997 предельную ошибку выборки и пределы, в которых ожидается средний срок службы металлорежущих станков.

Теоретическое обоснование

Предельная ошибка выборки это показатель, характеризующий диапазон в котором по обе стороны от выборочной средней или выборочной доли расположатся значения генеральной доли или генеральной средней гарантируемые с определенной вероятностью.

Δ = t ∙ μ

Δ – величина предельной ошибки выборки

μ – величина средней ошибки выборки

t – коэффициент доверия которому соответствуют вероятности предельной ошибки выборки.

Величина вероятности соответствующие коэффициентам доверия устанавливаются математической статистикой. Вероятности 0,683 соответствует коэффициент доверия равным 1, вероятности 0,954 t = 2, вероятности 0,997 t = 3.

Бесповторная выборка это когда каждая из единиц после регистрации ее признаков обратно не возвращается и в дальнейшем отборе не участвует. При бесповторной выборке сокращается численность единиц участвующих в выборочном наблюдении, поэтому при определении ошибки выборочной средней и выборочной доли признака при бесповторном отборе должна быть учтена численность генеральной совокупности и доля выборки. Если численность генеральной совокупности обозначается через N, то доля выборочной совокупности n будет равна отношению n к N. Поэтому формула средней ошибки выборки будет выглядеть:

РЕШЕНИЕ

Решение представим в виде таблицы.

Таблица 9.

Срок службы станков, лет

Число станков, шт.

Середина интервала.

х·f

( х-х)2

( х-х)2 ∙f

До 4

11

3

33

14,29

157,19

4–6

24

5

120

3,17

76,08

6–8

35

7

245

0,05

1,75

8–10

25

9

225

4,93

123,25

Свыше 10

5

11

55

17,81

89,05

Итого

100

678

40,25

447,32

Определяем средний срок службы станков

Характеристики

Тип файла
Документ
Размер
804,52 Kb
Предмет
Учебное заведение
Неизвестно

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6606
Авторов
на СтудИзбе
296
Средний доход
с одного платного файла
Обучение Подробнее