181119 (584141), страница 2

Файл №584141 181119 (Линейная регрессия) 2 страница181119 (584141) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

3) Рассчитаем остаточные суммы квадратов для каждой регрессии.

,

.

4) Вычислим F- распределения.

Fнабл=S/S =1,653.

5) Произведем сравнение Fнабл и Fтабл.

1,653<5,32 (при k1=1 и k2=n–2=10–2=8), следовательно, гетероскедастичность места не имеет, т.е. дисперсия остатков гомоскедастична.

  • Отсутствие автокорреляции.

Отсутствие автокорреляции проверяется по d-критерию Дарбина - Уотсона:

Таблица 4

εi

εi-1

εi- εi-1

(εi- εi-1)2

1

1,284

2

-1,521

1,284

-2,805

7,868

3

2,611

-1,521

4,132

17,073

4

1,894

2,611

-0,717

0,5141

5

0,089

1,894

-1,805

3,258

6

-1,760

0,089

-1,849

3,4188

7

-2,433

-1,760

-0,673

0,4529

8

-2,106

-2,433

0,327

0,1069

9

3,001

-2,106

5,107

26,081

10

-1,062

3,001

-4,063

16,508

Сумма

75,282

; d=75,282/37,961=1,983.

Так как d-критерий меньше двух, то мы наблюдаем присутствие положительной автокорреляции.

  • Остатки подчиняются нормальному закону распределения.

  1. Осуществить проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента

; ,

; ,

где

Тогда , ; и

tтабл=2,3060 (при 10-2=8 степенях свободы); tа и tb> tтабл, что говорит о значимости параметров модели.

  1. Коэффициент детерминации находится по формуле:

.

Данные возьмем из таблицы 5:

Таблица 5

x

y

1

17

26

3,7

4,1

13,69

16,81

1,284

4,938

2

22

27

8,7

5,1

75,69

26,01

-1,521

5,633

3

10

22

-3,3

0,1

10,89

0,01

2,611

11,868

4

7

19

-6,3

-2,9

39,69

8,41

1,894

9,968

5

12

21

-1,3

-0,9

1,69

0,81

0,089

0,424

6

21

26

7,7

4,1

59,29

16,81

-1,760

6,769

7

14

20

0,7

-1,9

0,49

3,61

-2,433

12,165

8

7

15

-6,3

-6,9

39,69

47,61

-2,106

14,040

9

20

30

6,7

8,1

44,89

65,61

3,001

10,003

10

3

13

-10,3

-8,9

106,09

79,21

-1,062

8,169

Сумма

133

219

392,1

264,9

83,979

Ср. знач.

13,3

21,9

Для проверки значимости модели используем F-критерий Фишера:

.

Fтабл=5,32 (k1=1, k2=8 степенями свободы) ;

F>Fтабл, что говорит о значимости уравнения регрессии.

Среднюю относительную ошибку аппроксимации находим по формуле:

;

В среднем расчетные значения отклоняются от фактических на 8,4%.

Поскольку найденная средняя относительная ошибка аппроксимации находится в интервале от 5 до 10, то можно утверждать, что модель имеет хорошее качество.

  1. Ширина доверительного интервала находится по формулам:

где tα=1,86 при m=n-2=8 и α=0,1

Т.о.

Верхн. граница: 25,173+4,34=29,513

Нижн. граница: 25,173-4,34=20,833

Таблица 6

Нижняя граница

Прогноз

Верхняя граница

20,83

25,17

29,51

  1. Фактические и модельные значения Y, точки прогноза представлены на графике 2.

График 2

  1. Составить уравнения нелинейной регрессии:

    • Гиперболической

Уравнение показательной кривой имеет вид: ŷ = a + b/x.

Произведем линеаризацию модели путем замены Х = 1/х.

Тогда уравнение примет вид: ŷ = a + bХ- линейное уравнение регрессии.

Данные, необходимые для нахождения параметров приведены в таблице 6

Таблица 7

y

x

X

X2

Xy

ŷ

εi

εi2

1

26

17

0,0588

0,0035

1,5294

24,41

1,59

2,52

6,11

2

27

22

0,0455

0,0021

1,2273

25,10

1,90

3,61

7,04

3

22

10

0,1000

0,0100

2,2000

22,29

-0,29

0,09

1,33

4

19

7

0,1429

0,0204

2,7143

20,09

-1,09

1,18

5,72

5

21

12

0,0833

0,0069

1,7500

23,15

-2,15

4,63

10,24

6

26

21

0,0476

0,0023

1,2381

24,99

1,01

1,02

3,89

7

20

14

0,0714

0,0051

1,4286

23,76

-3,76

14,16

18,82

8

15

7

0,1429

0,0204

2,1429

20,09

-5,09

25,88

33,91

9

30

20

0,0500

0,0025

1,5000

24,87

5,13

26,35

17,11

10

13

3

0,3333

0,1111

4,3333

10,28

2,72

7,38

20,90

Сумма

219

133

1,0757

0,1843

20,0638

86,82

125,07

Ср.знач.

21,9

13,3

0,1076

0,0184

2,0064

Значение параметров а и b линейной модели определим по формулам:

Уравнение регрессии будет иметь вид ŷ = 27,44 – 51,47 X.

Перейдем к исходным переменным, получим уравнение гиперболической модели:

.

Г рафик 3

Степенная

Уравнение степенной модели имеет вид: ŷ = a · xb

Для построения этой модели необходимо произвести линеаризацию переменных. Для этого произведем логарифмирование обеих частей уравнения:

lg ŷ = lg a + b lg x

Обозначим Y = lg ŷ; A = lg a; X = lg x

Тогда уравнение примет вид: Y = A + bX - линейное уравнение регрессии.

Рассчитаем его параметры, используя данные таблицы 8:

Таблица 8

y

x

Y

X

YX

X2

ŷ

εi

εi2

26

17

1,4150

1,2304

1,7411

1,5140

24,545

1,45

2,12

5,60

27

22

1,4314

1,3424

1,9215

1,8021

27,142

-0,14

0,02

0,52

22

10

1,3424

1,0000

1,3424

1,0000

19,957

2,04

4,17

9,29

19

7

1,2788

0,8451

1,0807

0,7142

17,365

1,63

2,67

8,60

21

12

1,3222

1,0792

1,4269

1,1646

21,427

-0,43

0,18

2,04

26

21

1,4150

1,3222

1,8709

1,7483

26,654

-0,65

0,43

2,51

20

14

1,3010

1,1461

1,4911

1,3136

22,755

-2,76

7,59

13,78

15

7

1,1761

0,8451

0,9939

0,7142

17,365

-2,37

5,59

15,77

30

20

1,4771

1,3010

1,9218

1,6927

26,151

3,85

14,81

12,83

13

3

1,1139

0,4771

0,5315

0,2276

12,479

0,52

0,27

4,01

Сумма

219

133

13,2729

10,5887

14,3218

11,8913

37,86

74,94

Ср.знач.

21,9

13,3

1,3273

1,0589

1,4322

1,1891

Значение параметров А и b линейной модели определим по формулам:

Характеристики

Тип файла
Документ
Размер
3 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее