179312 (583761), страница 2
Текст из файла (страница 2)
При заполнении таблиц 6 и 7 использованы формулы для цепной формы расчета:
∆ = у – уi,
Тр = уi/уi – 1,
Тпр = Тр – 1,
А = уi – 1/100
и для базисной формы:
∆ = уi – у0,
Тр = уi/у0,
Тпр = Тр – 1,
∆- = ∆/7,
Тр- = 7√(Тр)1 (Тр)2 … (Тр)7.
Графики и расчетные таблицы говорят о небольшом снижении уровня краж по населенным пунктам А и Б. В среднем абсолютное снижение больше у населенного пункта Б, а темп снижения больше у пункта А. Но сам уровень преступности все время остается выше в населенном пункте Б.
4. Корреляционная зависимость
Парный коэффициент корреляции
Чху = ху- – х-*у-/бхбу.
После вычисления среднего значения
ху- = 1/8∑хiyi = 52514,25
получаем Чху = 0,26
Корреляционная зависимость слабая.
У величины Чху как у случайной величины есть среднее квадратичное отклонение
mч = √1-ч2/n-2 = 0,4
Величина tч = ч/ mч распределена по закону Стьюдента со степенью свободы к = n – 2 = 6.
При уровне значимости а = 0,05
Табличное значение
tтабл = 2,4469
Предельная ошибка
∆ч = tтабл * mч = 0,98.
Поскольку вообще -1≤чху≤1, то вычисленная ошибка ∆ч = 0,98 смысла не имеет. Причина кроется в слабой тесной связи признаков х и у.
5. Уравнение регрессии
Линейная регрессия у = а + вх рассчитывается по формуле:
ỷ – у- = ч бу/бх (х-х-),
ỷ – 330,4 = 0,26 * 80,404/53,661 (х – 155,5),
ỷ = 0,39х + 269,8
Критерий Фишера имеет расчетное значение
F = (tч)4 = (ч/ mч)4 = 0.18
При надежности 95% табличное значение F табл = 5,99. со степенями свободы к1 = 1, к2 = 6.
Так как F = 0,18 ‹ 1, следует перейти к обратной величине Fфакт = 5,55. Но тогда и F табл = 233,97 для степеней свободы к1 = 6, к2 = 1.
Мы видим, что все уравнение регрессии не значимо.
Абсолютная ошибка ∆у зависит от конкретного значения х и рассчитывается по формуле:
∆у = бост √1+1/8 + ∑(х – х-)2/8бх2,
Где в свою очередь,
бост = √∑(уi –ỷi)2/6.
По формуле ỷ = 269,8 + 0,39х найдем восемь значений ỷ(х):
337 312 362 323 332 361 301 315
Значит, бост = 89,373.
Самая малая ошибка ∆у будет при х = х-:
(∆у)min = 34,8 * 2,4469 = 232.
Для ошибки это слишком много. Это объясняется слабой теснотой корреляционной зависимости.
6. Обобщение статистических данных и статистический анализ
После группировки исходных данных по пятилетним периодам получились вариационные интервальные ряды.
Поэтому в их ранжировке нет необходимости.
После построения гистограмм выяснилось, что распределения сильно отличаются от распределения Гаусса. Поэтому их исследование с помощью понятий асимметрии и эксцесса становится формальным.
Вычисление средних значений позволило сделать вывод о почти двукратном превышении показателя преступности в населенном пункте Б. Это подтверждает и сравнительная диаграмма 3.
В течение первых шести пятилеток в населенных пунктах А и Б отмечались противоположные тенденции по динамике уровня выявленных лиц, а в последние две пятилетки эти тенденции совпадали. В целом заметно небольшое снижение уровня преступности данного вида. На это указали и расчеты при заполнении таблиц 6 и 7.
Как и ожидалось, корреляционная зависимость показателей по двум населенным пунктам оказалась слабой. Оказалось незначимой и сама регрессионная линейная модель.
По этой причине потеряли практический смысл оценки ошибок для линейного коэффициента корреляции и для прогнозных значений регрессии.
Список использованной литературы
1. Кремер Н.Ш., Путко Б.А. Эконометрика: Учебник для ВУЗов. М.: ЮНИТИ-ДАНА, 2005.
2. Практикум по эконометрике: Учебное пособие. Под ред. И.И. Елисеевой. М.: Финансы и статистика, 2003.
3. Эконометрика: Учебник. Под ред. И.И. Елисеевой. М.: Финансы и статистика, 2004.
4. Шимко П.Д., Власов М.П. Статистика/ Серия «Учебники, учебные пособия». – Ростов на Дону: Феникс, 2003.
5. Глинский В.В., Ионин В.Г. Статистический анализ: Учебное пособие. М.: ИНФРА-М; Новосибирск: Сибирское соглашение, 2002.
6. Сборник задач по теории статистики: Учебное пособие / Под ред. В.В. Глинского и Л.К. Серга. – М.: ИНФРА-М; Новосибирск: Сибирское соглашение, 2002












