178355 (583539), страница 2

Файл №583539 178355 (Примеры решения задач по статистике) 2 страница178355 (583539) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Lэмп.=2*(11*1)+(17*2)+(19*3)=107

По табл. VIII приложения 1 определяем критические значения L для данного количества испытуемых: n=6, и данного количества условий: с=4.

Построим «Ось значимости»:


L0,05 L 0,01

… ? !

Lэмп. ›L кр.

Ответ: Но отклоняется. Принимается Н1. Тенденция увеличения индивидуальных показателей от первого условия к третьему не является случайной (р<О,О1).

  1. Решите задачу, используя критерий хи-квадрат.

Экспериментатору необходим идеальный кубик для чистоты эксперимента. Идеальный кубик – это кубик, каждая грань которого выпадала бы примерно равное число раз при достаточно большом числе подбрасываний. Задача состоит в выяснении того. Будет ли данный кубик близок к идеальному?

Для решения этой задачи кубик подбрасывали 60 раз. Выпадение граней распределилось следующим образом.





Грани кубика

1

2

3

4

5

6

Частота выпадения

12

9

11

14

8

6

1. проверим выполнение ограничений: количество испытуемых в группе – 60 испытаний (60 > 20);

2. результаты занесены в таблицу. Число составляемых разрядов ƒ = 6;

3. сформулируем гипотезы:

Н 0: различия между данным кубиком и идеальным не значимы;

Н 1: различия между данным кубиком и идеальным значимы.

4. вычисления χ² проведем в таблице

χ²

ƒi ΄

ƒi ΄΄

ƒi ΄- ƒi ΄΄

(ƒi΄ - ƒi΄΄) ²

ƒi ΄ + ƒi ΄΄

(ƒi΄ - ƒi΄΄) ²

ƒi ΄ + ƒi ΄΄

1

12

10

2

4

22

0.18

2

9

10

-1

1

19

0.05

3

11

10

1

1

21

0,05

4

14

10

4

16

24

0.67

5

8

10

-2

4

18

0,22

6

6

10

-4

16

16

1

∑ = 2,17

χ² = 2,17

5. по таблице 6 приложения найдем для к = 5 (к = ƒ - 1= 6 – 1 = 5) значение χ² (p ≤ 0,05) = 9,49.

Так как 2,17 < 9,49, то принимается гипотеза Н0: различия между частотами двух кубиков не значимы. Обе эмпирические совокупности можно считать выборками из одной генеральной совокупности.





  1. Охарактеризуйте понятие «множественная корреляция».

Множественный коэффициент корреляции R (множественное R) - это положительный квадратный корень из R-квадрата. Эта статистика полезна при проведении многомерной регрессии (т.е. использовании нескольких независимых переменных), когда необходимо описать зависимость между переменными.

Множественный коэффициент корреляции характеризует тесноту связи между зависимой переменной и предиктором. Он изменяется в пределах от 0 до 1 и рассчитывается по формуле:

где - определитель корреляционной матрицы;
- алгебраическое дополнение -го элемента.

Наблюдаемое значение находится по формуле:

При небольшом числе наблюдений величина множественного коэффициента корреляции, как правило, завышается. Множественный коэффициент корреляции считается значительным, т.е. имеет место статистическая зависимость между и остальными факторами , если

где определяется по таблице F-распределения.

9

Характеристики

Тип файла
Документ
Размер
305,1 Kb
Предмет
Учебное заведение
Неизвестно

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7027
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее