178354 (583538), страница 2

Файл №583538 178354 (Примеры решения задач по статистике) 2 страница178354 (583538) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Сформулируем гипотезы.

Н0: Различия во времени, которое испытуемые проводят над решением трех различных тестов, являются случайными.

H1: Различия во времени, которое испытуемые проводят над решением трех различных тестов, не являются случайными.

Теперь нам нужно определить эмпирическое значение χ2r, по формуле:

где с - количество условий;

n - Количество испытуемых;

T2j - суммы рангов по каждому из условий.

Определим χ2r для данного случая:

χ2r = ((12/6*3*(3+1))*(100 +256 + 100)) – 3*6*(3+1) = 4

Поскольку в данном примере рассматриваются три задачи, то есть 3 условия, с=3. Количество испытуемых n=6. Это позволяет нам воспользоваться специальной таблицей χ2r, а именно табл. VII-A Приложения I. Эмпирическое значение χ2r=4 при с=3, n=6 точно соответствует уровню значимости р=0,184.

Ответ: Н0 отклоняется. Принимается Н1. Различия во времени, которое испытуемые проводят над решением трех различных тестов, неслучайны (р=0,184).

  1. Решить задачу, используя критерий Розенбаума.

Экспериментатор измерил, используя тест Векслера, показатели интеллекта у двух групп респондентов из городской и сельской местности. Его интересует вопрос – будут ли обнаружены статистические значимые различия в показателях интеллекта. В городской группе было 11 человек, в сельской – 12.

город

96

100

104

104

120

120

120

120

126

130

134

село

76

82

82

84

88

96

100

102

Ё04

110

118

120

Решение

Таблица 1.

Индивидуальные значения вербального интеллекта в выборках городских (n1=11) и сельских (n2=12 ) респондентов

Город

Показатель вербального интеллекта

Село

Показатель вербального интеллекта

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

96

100

104

104

120

120

120

120

126

130

134

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

76

82

82

84

88

96

100

102

104

110

118

120

Упорядочим значения в обеих выборках, а затем сформулируем гипотезы:

H0: горожане не превосходят сельчан по уровню вербального интеллекта.

H1: горожане превосходят сельчан по уровню вербального интеллекта.





Таблица 2

Упорядоченные по убыванию вербального интеллекта ряды индивидуальных значений в двух выборках

1 ряд – горожане

2 ряд – сельчане

1

2

3

134

130

126

S1

4

5

6

7

8

9

10

11

.

120

120

120

120

104

104

100

96

1

2

3

4

5

6

7

120

118

110

104

102

100

96

8

9

10

11

12

88

84

82

82

76

S2

Как видно из табл. 2, мы правильно обозначили ряды: первый тот, что "выше" - ряд горожан, а второй, тот, что "ниже” - ряд сельчан. По табл. 2. определяем количество значений первого ряда, которые больше максимального значения второго ряда: S1=3. Теперь определяем количество значений второго ряда, которые меньше минимального значения первого ряда: S2=5. Вычисляем по формуле:

Qэмп =S1+S2=3 + 5 =8

По табл.1 Приложения 1 определяем критические значения Q для n1=11, n2=12;

Правило отклонения Н0 в принятия Н1

Если эмпирическое значение критерия равняется критическому значению,cответствующему р≤0,05 или превышает его, то Н0 отклоняется, но мы еще не можем определенно принять Н1.

Если эмпирическое значение критерия равняется критическому значению, соответствующему р≤0,01 или превышает его, то Н0 отклоняется и принимаетсяH1.

Рис 1. ось значимости для критерии Q Разенбаума

Эмпирическое значение критерия попадает в область между Q0,05 и Q0,01. Это зона "неопределенности": мы уже можем отклонить гипотезу о недостоверности различий (Н0), но еще не можем принять гипотезы об их достоверности (H1).

Ответ: мы уже можем отклонить гипотезу о недостоверности различий интеллекта между городскими и сельскими жителями(Н0), но еще не можем принять гипотезы об их достоверности (H1).

  1. Как рассчитать коэффициент корреляции Спримена, если мы имеем одинаковые ранги?

Поскольку в обоих сопоставляемых ранговых рядах присутствуют группы одинаковых рангов, перед подсчетом коэффициента ранговой корреляции необходимо внести поправки на одинаковые ранги Та и Тb:

Та=∑(а3-а)/12

Тb=∑(b3-b)/12

где a - объем каждой группы одинаковых рангов в ранговом ряду А,

b - объем каждой группы одинаковых рангов в ранговом ряду В.

Для подсчета эмпирического значения гs используем формулу:

rs=1-6

При больших количествах одинаковых рангов изменения rs могут оказаться гораздо более существенными. Наличие одинаковых рангов означает меньшую степень днфферентдкрованностк упорядоченных переменных и, следовательно, меньшую возможность оценить степень связи между ними.

1 Определения и формулы расчета М и σ даны в параграфе «Распределение признака. Параметры распределения».

9

Характеристики

Тип файла
Документ
Размер
1,09 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7027
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее