166111 (582588), страница 2
Текст из файла (страница 2)
где ω(Х) - массовая доля растворенного вещества X; m(Х) масса растворенного вещества X, г; m(S) - масса растворителя S, г; m= [m(Х) + m(S)] - масса раствора, г.
Массовую долю выражают в долях единицы или в процентах (например: ω = 0,01 или ω = 1%).
Молярная концентрация (молярность) показывает число молей растворенного вещества, содержащегося в 1 литре раствора:
С(Х) = v(Х) / V, (2)
где С(Х) - молярная концентрация растворенного вещества X, моль/л; v(Х) - количество растворенного вещества X, моль; V - объем раствора, л.
Как следует из (2), молярная концентрация выражается в моль/л. Эта размерность иногда обозначается М, например: 2МNаОН.
Мольная доля растворенного вещества - безразмерная величина, равная отношению количества растворенного вещества к общему количеству веществ в растворе:
где N(Х) - мольная доля растворенного вещества X; v(Х) - количество растворенного вещества X, моль; v(S) - количество вещества растворителя S, моль.
Нетрудно представить, что сумма мольных долей растворенного вещества и растворителя равна 1:
N(X) + N(S) = 1. (4)
При решении многих задач полезно переходить от молярной концентрации к массовой доле, мольной доле и т.д. Например, молярная и процентная концентрации взаимосвязаны так:
C(X) = 10 ∙ ω(X) ∙ ρ / M(X), (5)
ω(X) = C(X) ∙ M(X) / (10 ∙ ρ) (6)
где ω(Х) - массовая доля растворенного вещества, выраженная в %; М(Х) - молярная масса растворенного вещества, г/моль; р = m/(1000 V) - плотность раствора, г/мл.
Нормальность раствора обозначает число грамм-эквивалентов данного вещества в одном литре раствора или число миллиграмм-эквивалентов в одном миллилитре раствора.
Грамм - эквивалентом вещества называется количество граммов вещества, численно равное его эквиваленту. Для сложных веществ - это количество вещества, соответствующее прямо или косвенно при химических превращениях 1 грамму водорода или 8 граммам кислорода.
Эоснования = Моснования / число замещаемых в реакции гидроксильных групп
Экислоты = Мкислоты / число замещаемых в реакции атомов водорода
Эсоли = Мсоли / произведение числа катионов на его заряд
Моляльность раствора mi- количество i-го компонента (в молях) в 1000 г растворителя
Вопрос 5
Что такое фермент? Привести примеры использования.
«Ферменты (от латинского слова fermentum – закваска) – белки, которые обладают каталитической активностью и характеризуются очень высокой специфичностью и эффективностью действия. Все процессы в живом организме- дыхание, пищеварение, мышечное сокращение, фотосинтез и другие – осуществляются с помощью ферментов.
Ферменты находятся во всех живых клетках и составляют большую часть всех их белков. Они во много миллионов раз ускоряют самые разнообразные химические превращения, из которых складывается обмен веществ.
Под действием различных ферментов составные компоненты пищи: белки, жиры и углеводы – расщепляются до более простых соединений, из которых затем в организме синтезируются новые макромолекулы, свойственные данному типу. »
Области применения ферментов
Кормовые добавки (увеличение питательной ценности кормов, гидролиз некрахмальных полисахаридов и белков кормов)
«Европейская диета» (пшеница ячмень): ксиланазы, бета-глюканазы, маннаназы, ферулоил/кумароил-эстеразы, альфа-L-арабинофуранозидазы
«Американская диета» (соя кукуруза): пектиназы, арабиназы, галактаназы, маннаназы, альфа-галактозидазы, протеазы, фитазы
Пищевая промышленность (гидролиз некрахмальных полисахаридов, уменьшение вязкости растворов, увеличение выхода целевого продукта)
Производство пива: бета-глюканазы, целлюлазы, протеазы
Производство спирта: бета-глюканазы, целлюлазы, амилазы
Производство белковых гидролизатов: протеазы, кератиназы
Текстильная промышленность (изменение свойств поверхности текстильных изделий)
Джинсовые изделия (удаление индиго): целлюлазы
Биополировка, удаление ворса, предотвращение пиллинга: целлюлазы
Биоскоринг (биоотварка) хлопка: пектиназы, целлюлазы, протеазы, кутиназы, эстеразы
Облагораживание шерсти: протеазы
Целлюлозно-бумажная промышленность (биоотбеливание пульпы, удаление тонеров и чернил при вторичной переработке бумаги/макулатуры):
-
ксиланазы
-
маннаназы
-
целлюлазы
Производство моющих средств (разрушение загрязнений, придание свежести тканям, предотвращение пиллинга):
-
щелочные протеазы
-
щелочные липазы
-
щелочные амилазы
-
щелочные целлюлазы
-
щелочные пектиназы
Вопрос 6
Что такое «ионное произведение воды», «водородный показатель среды»? Чему равен водородный показатель нейтральной среды?
КH2O = 1.10-4
Данная константа для воды называется ионным произведением воды, которое зависит только от температуры.
При диссоциации воды на каждый ион Н+ образуется один ион ОН-, следовательно, в чистой воде концентрации этих ионов одинаковы: [Н+] = [ОН-]. Используя значение ионного произведения воды, находим:
Таковы концентрации ионов Н+ и ОН- в чистой воде. Рассмотрим, как изменится концентрация при добавлении других веществ, например, соляной кислоты, которая диссоциирует в воде на ионы Н+ и Сl-. Концентрация ионов Н+ в растворе станет увеличиваться, но ионное произведение воды от концентрации не зависит - в таком случае уменьшается концентрация [ОН-].
Напротив, если к воде добавить щелочь, то концентрация [ОН-] увеличится, а [Н+] уменьшится. Концентрации [Н+] и [ОН-] взаимосвязаны: чем больше одна величина, тем меньше другая, и наоборот.
Кислотность растворов обычно выражают через концентрацию ионов Н+. В кислых растворах [Н+] > 10-7 моль/л, в нейтральных [Н+] = 10-7 моль/л, в щелочных [Н+] < 10-7 моль/л.
Чтобы не писать числа с показателем степени, кислотность раствора часто выражают через отрицательный логарифм концентрации ионов водорода, называя эту величину водородным ателем и обозначая ее рН:
pН = -lg[Н+]
Величина рН впервые была введена датским химиком С. Серенсоном. Буква «р» - начальная от датского слова potenz (степень), «Н» - символ водорода.
В кислых растворах рН 7
Вопрос 7
Что собой представляет ряд напряжений металлов? По какому принципу выстроен этот ряд?
Восстановительная активность металлов (свойство отдавать электроны) уменьшается, а окислительная способность их катионов (свойство присоединять электроны) увеличивается в указанном ряду слева направо.
Li | Cs | K | Ba | Ca | Na | Mg | Al | Zn | Fe | Co | Ni | Sn | Pb | H2 | Cu | Ag | Hg | Pt | Au |
-3,04 | -3,01 | -2,92 | -2,90 | -2,87 | -2,71 | -2,36 | -1,66 | -0,76 | -0,44 | -0,28 | -0,25 | -0,14 | -0,13 | 0 | +0,34 | +0,80 | +0,85 | +1,28 | +1,5 |
Li+ | Cs + | K+ | Ba2+ | Ca2+ | Na+ | Mg2+ | Al3+ | Zn2+ | Fe2+ | Co2+ | Ni2+ | Sn2+ | Pb2+ | 2 H | Cu2+ | Ag+ | Hg2+ | Pt2+ | Au3+ |
Вопрос 8
При эмульсионном способе химической очистки эмульгатор разбавляется водой, и полученная эмульсия используется для чистки особо загрязненных тканей. Рассчитать массовую концентрацию компонентов эмульгатора в водном растворе, если 2,5 г эмульгатора АМ-31 состава (авироль – 30%, моноалкиламид – 10%, тетрахлорэтилен – 60%) добавлено к 1 л воды.
Масса авиролья равна:
2,5 г* 0,3 = 0,75 г
Масса моноалкиламида равна:
2,5 г* 0,1 = 0,25 г
Масса тетрахлорэтилена равна:
2,5 г* 0,6 = 1,5 г
Масса раствора равна:
0,75+0,25+1,5+1000 = 1002,5 г
Массовая концентрация авиролья равна:
0,75/1002,5 *100 = 0,075 %
Массовая концентрация моноалкиламида равна:
0,25/1002,5 *100 = 0,025%
Массовая концентрация тетрахлорэтилена равна:
1,5/1002,5 *100 = 0,15 %
Вопрос 9
При какой концентрации раствора степень диссоциации азотистой кислоты HNO2 будет равна 0,2? Константа диссоциации азотистой кислоты 4*10 -4.
Между константой диссоциации К и степенью диссоциации существует следующая зависимость (закон разбавления Оствальда): = КV, или = К/С, где V – разбавление раствора ( V = 1/C ); С – концентрация электролита (моль/л).
Из этой зависимости следует, что степень диссоциации увеличивается при уменьшении концентрации (т.е. при разбавлении раствора), а также при увеличении К (т.е. у более сильных электролитов).
Из закона разбавления могут быть получены формулы, связывающие константу диссоциации слабого электролита, степень диссоциации и концентрацию иона (Сиона). Действительно, так как
К = (СКt CAn ) / C и CKt = CAn , то Сиона = К/С.
Нетрудно видеть, что также Сиона = С и Сиона = К/С.
По закону Оствальда:
= К/С = (4 х 10-4) / 0,2 = 4,5 х 10-2, или 4,5%.
Вопрос 10
На некоторых дорогостоящих автомобилях престижных марок кузов в целях защиты от коррозии покрыт слоем олова. Будет ли происходить коррозия железа при нарушении такого покрытия (например, в результате появления царапины)? Изобразить схему возникающего при этом гальванического элемента. Среда кислая. Рассчитать его ЭДС для стандартных условий.
Е (Fe) = -0.44 B
Е (Sn) = -0.14 B
При наличии дефектов на белой жести процесс коррозии существенно иной, чем оцинкованного железа. Поскольку олово электроположительнее железа, то растворению подвергается железо, а катодом становится олово (рис. 3). В результате при коррозии слой олова сохраняется, а под ним активно корродирует железо.
Е = -0,14- (-0,44) = 0,3 В
Список литературы
-
Цитович И.К. Курс аналитической химии. – М.: Высшая школа, 1968. – 474 с.
-
Пилипенко А.Т., Пятницкий И.В. Аналитическая химия. – М.: Химия, 2002. – с. 480.
-
Барсуковва З. А. Аналитическая химия. – М.: Высшая школа, 2003. – 320
-
Химия / Под. ред. В. Шретера . – М.: Химия, 1989. – с.62-63.
-
Пасынский А.Г. Коллоидная химия. – М.: Высшая школа, 1968. – 231с.
-
Воронин Г.Ф. Основы термодинамики. М.: Изд-во Моск. ун-та, 1987.
-
Герасимов Я.И. Курс физической химии. Т.1, 2. М.: Химия, 1969.
-
Горшков В.И., Кузнецов И.А. Основы физической химии. М.: Изд-во Моск. ун-та, 2003.
-
Полторак О.М. Термодинамика в физической химии. М.: Высшая школа, 1991.
-
Семиохин И.А. Физическая химия для геологов. Изд-во Моск. ун-та, 1991
-
Девис С, Джеймс А. Электрохимический словарь. М.: Мир, 1979.
-
Кузнецова Е.М., В.М.Байрамов, Н.В.Федорович, В.Ф.Шевельков. Физическая химия в вопросах и ответах. М.: Изд-во Моск. ун-та, 1981
-
Кузнецова Е.М., Агеев Е.П. Термодинамика в вопросах и ответах. Хим. фак-т МГУ им. М.В.Ломоносова. 1997
-
Термодинамика. Основные понятия. Терминология. Буквенные обозначения величин. М.: Наука, 1984.