123206 (577548), страница 2

Файл №577548 123206 (Инструментальные стали. Стали для измерительного инструмента. Штамповые стали. Твердые сплавы) 2 страница123206 (577548) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Структура стали после отпуска – троостосорбит. Механические свойства стали 5ХНМ при температуре 500°C составляют: в = 900МПа, О,2 = 650 МПа, = 2022% и = 70%.

Стали 5ХГМ и 5ХНВС при одинаковой со сталью 5ХНМ прокаливаемостью уступают ей в вязкости из-за замены никеля марганцем или увеличения содержания хрома и кремния. Они предназначены для средних штампов со стороной 300–400 мм или для крупных (сталь 5ХНВС) простой формы.

Сталь 5ХНВ по стойкости равноценна стали 5ХНМ, но имеет меньшую прокаливаемость, так как вольфрам повышает ее слабее, чем молибден. Она применяется для небольших и средних штампов со стороной 200 – 300 мм.

Средненагруженный инструмент, работающий с разогревом поверхности до температуры 600°С, а также инструмент с большой поверхностью, работающий при температурах 400–500°С, изготовляют из стали 4Х5В2ФС и 4Х5В4ФМС. Например, из них изготовляют выталкиватели для неглубоких отверстий, матрицы, различные вставки, инструмент для штамповки труднодеформируемых металлов, пресс-форм для литья под давлением алюминиевых сплавов и т.д.

Фазовый состав этих сталей в отожженном состоянии – легированный феррит и карбиды типа М23С6 и М6С. Эти стали теплостойки, мало чувствительны к резкой смене температур, обладают повышенной окалиностойкостью, устойчивы против корродирующего действия жидкого алюминия и обладают высокой прочностью при хорошей вязкости. Стали повышенной теплостойкости 3Х2В8Ф и 4Х2В5ФМ используют для деформирования при разогреве поверхности до температуры 600–700°С (сохраняется твердость HRC45, 0.2=1000 МПа). Из них изготовляют тяжело-нагруженный штамповый инструмент, например прошивные пуансоны, выталкиватели для глубоких отверстий, матрицы пресс-формы для отливок под давлением медных сплавов и т.д.

Превращения в сталях 4Х5В4ФМС, ЗХ2В8Ф и 4Х2В5ФМ, протекающие при термической обработке, во многом сходны с превращениями в быстрорежущей стали. Эти стали при закалке нагреваются до высоких температур для растворения возможно большего количества карбидов и получения после закалки высоколегированного мартенсита. Так как при температуре закалки карбиды полностью не растворяются, стали сохраняют мелкое зерно. При отпуске происходит дополнительное повышение твердости вследствие дисперсионного твердения при одновременном снижении пластичности и вязкости. Для получения достаточной вязкости отпуск проводят при более высоких температурах на твердость HRC 45 – 50, что соответствует структуре троостит.

Механические свойства после термической обработки следующие: в = 15001800 МПа, 0,2 = 13501650 МПа (при температуре 600–650°С – 0,2 = 9001100 МПа), = 25% (30–40% при температуре 650°С) и КС =25,5 кГм/см2.

Стали 4Х5МФС, 4Х5В2ФС, 4Х4ВМФС и другие с небольшими добавками вольфрама (молибдена) отличаются повышенной разгаростойкостью благодаря более высокой вязкости. Теплостойки до 600°С. Присутствие 4–5% Сr придает им хорошую окалиностойкость и повышенную износостойкость при нагреве. Эти стали предназначены для инструмента с высокой устойчивостью к резкой смене температур, в частности, для инструмента высокоскоростной штамповки.

Для пресс-форм, менее нагруженных в тепловом отношении, используют стали 4ХВ2С, Х12, 7X3, 8X3, коррозионностойкую сталь 30X13, конструкционные стали 40Х, 30ХГС и др. Для повышения стойкости пресс-формы также как и штампы подвергают азотированию, цианированию, борированию и хромированию.

6. Влияние легирующих элементов на свойства инструментальных сталей

Легирующие элементы в небольшом количестве (до 5%) вводят для увеличения закаливаемости, прокаливаемости, уменьшения деформаций и опасности растрескивания инструмента, так как позволяют проводить закалку в масле или горячих средах. Хром – постоянный элемент низколегированных сталей. Для улучшения свойств в них дополнительно вводят марганец, кремний, вольфрам, никель.

Марганец (1–2%) добавляют для обеспечения минимального изменения размеров при закалке. Интенсивно снижая интервал температур мартенситного превращения, он способствует сохранению повышенного количества остаточного аустенита (15–20%), который частично или полностью компенсирует увеличение объема в результате образования мартенсита. Кремний (1–1,5%) вводят для повышения сопротивления отпуску и образования легко отделяющейся окалины, вольфрам (1–5%) – повышения износостойкости. Никель (до 1,5%) добавляют в штамповые стали для увеличения вязкости.

Для обеспечения теплостойкости вводят хром, вольфрам или молибден в большом количестве с тем, чтобы связать углерод в специальные труднокоагулируемые при отпуске карбиды. Если содержание элементов невелико и образуется легированный цементит, то он коагулирует и вызывает разупрочнение при 200–250°С. Хром в количестве 6–12%, связывая углерод в карбид М7С3, задерживает распад мартенсита до 450–500°С. Более существенно повышает теплостойкость вольфрам или его химический аналог молибден, образующие в присутствии, хрома стойкие к коагуляции карбиды типа M6C. Выделение специальных карбидов повышает твердость после отпуска при 500–600°С. Особенно эффективно вторичная твердость и теплостойкость повышаются при введении нескольких сильных карбидообразователей, например, вольфрама и ванадия. При отпуске ванадий, выделяясь более интенсивно, усиливает дисперсионное твердение, а вольфрам, сохраняясь в мартенсите, задерживает его распад.

Увеличению теплостойкости способствует также кобальт. Он не образует карбидов, но, повышая энергию межатомных сил связи, затрудняет коагуляцию карбидов и увеличивает их дисперсность.

Для обеспечения высокой износостойкости используют легированные стали со значительным количеством избыточных карбидов – заэвтектоидные и ледебуритные. Благодаря избыточным карбидам эти стали сохраняют мелкое зерно и, как следствие, повышенную прочность и вязкость в широком интервале закалочных температур (до 1000–1300°С). Вместе с этим большое количество избыточных карбидов ухудшает обрабатываемость давлением и резанием, создает карбидную неоднородность. Скопления карбидов, карбидная сетка и полосчатость усиливают хрупкость, вызывают преждевременное выкрашивание рабочих кромок. Для равномерного распределения карбидов такие стали требуют всесторонней и тщательной ковки заготовок.

7. Инструментальные металлокерамические твердые сплавы

Металлокерамическими твердыми сплавами называются сплавы, состоящие из карбидов вольфрама и титана, сцементованных металлической связкой. Сильно измельченные частицы карбидов связываются между собой кобальтом.

Карбиды вольфрама и особенно титана обладают высокой твердостью, но хрупки. Поэтому металлокерамические сплавы, содержащие 70–98% карбидов, также имеют высокую твердость (HRC 86–92) и износостойкость, но хрупки, плохо сопротивляются изгибу и растяжению. При работе, связанной с ударами и толчками, сплав легко выкрашивается.

Твердые сплавы сохраняют высокую твердость и сопротивление износу до температуры 800–1000°С. При работе инструментами из твердых сплавов можно допустить разогрев режущей кромки до более высоких температур, чем у инструмента из быстрорежущей стали, т.е. инструмент из твердых сплавов может работать при более высоких скоростях резания. Скорость резания этими сплавами в 5–10 раз превышает допустимую скорость резания быстрорежущими сталями. Промышленность выпускает твердые сплавы трех групп (ГОСТ 3882).

Группа ВК – вольфрамокобальтовые, на основе карбида вольфрама WC (система WC–Со). Цифры после букв указывают содержание в сплаве кобальта. По своему структурному составу сплавы представляют собой частицы карбида вольфрама WC, связанные кобальтом. Эти сплавы наиболее прочные: в = 100–200 кГ/мм2.

Наибольшей твердостью (HRA 90 – 89) и износостойкостью, но пониженными прочностью (в = 100–110 кГ/мм2) и сопротивлением удару (0,2 кГм/см2 для ненадрезанных образцов) обладают сплавы ВК2 и ВК3. Они используются для чистового и получистового фрезерования сплошных поверхностей, для чистового зенкерования и т.д., при обработке чугуна, цветных металлов и неметаллических материалов. Сплавы ВК6 и ВК8, содержащие повышенное количество кобальта, имеют по сравнению со сплавами ВК2 и ВКЗ пониженную твердость (HRA 88–87,5) и износостойкость, но обладают высокой эксплуатационной прочностью и сопротивляемостью ударам (0,5 кГм/см2), вибрациям и выкрашиванию (особенно ВК8). Эти сплавы применяют для чернового точения, строгания, фрезерования и сверления чугуна, цветных металлов и их сплавов, а также неметаллических материалов. Сплавы с высоким содержанием кобальта ВК20, ВК30 применяют для штампов и инструментов для горных работ.

Вторая группа сплавов ТК – титановольфрамокобальтовые (система WC – TiC – Со) Т5К10, Т14К8, Т15К6, Т10К6. Цифры после буквы Т указывают весовое количество карбида TiC, цифры после буквы К – весовое содержание кобальта (остальное WC).

Структура этих сплавов состоит из карбидов вольфрама WC и титана TiC, связанных кобальтом, а при высоком содержании TiC (T30K4) – из карбида титана и кобальта, так как вольфрам и углерод растворяются в карбиде титана. Сплавы ТК менее прочны, чем сплавы ВК, но обладают большей износостойкостью. Чем больше сплав содержит TiC, тем выше износостойкость, но ниже прочность. Так, например, у сплава Т30К4 прочность в = 90 кГ/мм2, а у сплава Т5К10 прочность в = 130 кГ/мм2. Титановольфрамовые сплавы применяют главным образом при обработке сталей.

Кроме того, в обозначении сплава может стоять буква В-крупнозернистый сплав (размер зерен карбидов 3–5 мкм) и М – мелкозернистый (размер зерен 0,1–0,16 мкм).

Наибольшей эксплуатационной прочностью, сопротивляемостью ударным нагрузкам и выкрашиванию, но пониженной износостойкостью обладают сплавы Т5К10 и Т14К8. Напротив, сплавы Т60К6 и Т30К4 обладают высокой износостойкостью, но пониженной эксплуатационной прочностью и сопротивляемостью ударам и выкрашиванию. Твердость этой группы сплавов от HRA 88,5 (Т5К10) до HRA 92 (Т30К4). Для чистовой и получистовой обработки сталей используют сплавы Т30К4, Т15К6, для получистовой и черновой обработки – Т14К8 и Т5К10, а для черновой обработки и обдирки стальных слитков и поковок – Т5К12В.

Третья группа сплавов ТТК – титанотанталовольфрамокобальтовые (система WC – TiC – ТаС – Со), например сплав ТТК12. Цифра после букв ТТ показывает суммарное содержание TiC + ТаС, а после буквы К – количество кобальта. Сплав ТТ7К12 используется для тяжелой черновой обработки стальных поковок. Эти сплавы имеют более высокую прочность (в = 155 кГ/мм2), чем сплавы ТК. Твердые сплавы изготовляют в виде пластин, прикрепленных к державке, изготовленной из обычной стали, или инструментов простой формы.

Металлокерамические твердые сплавы получают не сплавлением, а спеканием. Для этой цели сначала приготовляют порошки WC и TiC, которые смешивают в определенной пропорции с порошком кобальта. Смесь порошков прессуют под давлением 500–2000 кГ/мм2 в формах, соответствующих размерам и форме пластинок (заготовки инструмента). Затем пластинки подвергают спеканию при высокой температуре (1400–1450°С).

Литература

1. «Основы материаловедения». И.И. Сидорин, Г.Ф. Косолапов, В.И. Макарова и др. Под ред. И.И. Сидорина. – М.: Машиностроение. – 1976, 436 с.

2. «Материаловедение». Ю.М. Лахтин, В.П. Леонтьева. – М.: Машиностроение. – 1972, 510 с.

3. Гуляев А.П. Металловедение. М., 1986.

Характеристики

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7027
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее