86364 (575067), страница 2

Файл №575067 86364 (Решение практических заданий по дискретной математике) 2 страница86364 (575067) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Фиксируем набор 000:

,

,

Следовательно, .

Фиксируем набор 100:

,

,

Следовательно, .

Фиксируем набор 010:

,

,

.

Следовательно, .

Фиксируем набор 001:

,

,

, .

Следовательно, функция (по нашему предположению) может быть представлена полиномом вида:

.

Если функция линейная, то на всех остальных наборах ее значение должно равняться 1. Но на наборе 111 . Значит, функция не является линейной, т.е. .

4. Принадлежность функции к классу .

Функция самодвойственная, если на любой паре противоположных наборов (наборов, сумма десятичных эквивалентов которых равна , где п – количество переменных функции) функция принимает противоположные значения.

Вычисляем . Вычисляем значения функции на оставшихся наборах:

Строим таблицу:

(000)

0

(001)

1

(010)

2

(011)

3

(100)

4

(101)

5

(110)

6

(111)

7

1

1

1

1

1

1

1

0

На наборах 1 и 6, 2 и 5, 3 и 4 функция принимает одинаковые значения. Следовательно, .

5. Принадлежность функции к классу .

Из таблицы видно: 000 < 111 , но . Следовательно, .

Рассмотрим функцию .

1. Принадлежность функции к классу :

.

Следовательно, .

2. Принадлежность функции к классу :

.

Следовательно, .

3. Принадлежность функции к классу .

Предполагаем, что

.

Фиксируем набор 000:

,

.

Фиксируем набор 100:

,

.

Фиксируем набор 010:

,

.

Фиксируем набор 001:

,

.

Окончательно получаем

.

Это равенство не соблюдается на наборе 011:

,

.

Следовательно, .

4. Принадлежность функции к классу .

Вычислим значения функции на оставшихся наборах:

Строим таблицу :

(000)

0

(001)

1

(010)

2

(011)

3

(100)

4

(101)

5

(110)

6

(111)

7

1

1

1

0

0

0

0

0

Из таблицы видно, что на наборах 3 и 4 функция принимает одинаковые значения. Следовательно, .

5. Принадлежность функции к классу .

Из таблицы видно, что 111 > 000 , но . Следовательно, .

Строим критериальную таблицу:

К0

К1

КЛ

КС

КМ

f1

-

-

-

-

-

f2

-

-

-

-

-

В таблице в каждом столбце стоят минусы. Следовательно, система булевых функций

является полной .

Найдем все возможные базисы. По критериальной таблице составим КНФ :

.

Приведем КНФ к ДНФ :

.

По полученной ДНФ выписываем искомые базисы:

.

Задание 5

Минимизировать булеву функцию по методу Квайна – Мак-Класки.

Решение:

1 этап. Определение сокращенной ДНФ.

По десятичным эквивалентам запишем 0-кубы :

Выполним разбиение на подгруппы:

.

Строим -кубы, сравнивая соседние группы (значок (*) указывает на участие данной импликанты в склеивании):

Выполняем разбиение всех -кубов в зависимости от расположения независимой переменной Х :

.

Выполняем сравнение кубов внутри каждой подгруппы с целью построения -кубов (значок (*) указывает на участие данной импликанты в склеивании):

.

Выполняем сравнение кубов внутри каждой подгруппы с целью построения -кубов (значок (*) указывает на участие данной импликанты в склеивании):

или

.

Так как они одинаковы, то .

Запишем сокращенную ДНФ, в которую должны быть включены им-пликанта из К 3 и импликанты, не участвовавшие в склеивании (в нашем случае таких импликант нет) :

.

2 этап. Определение тупиковой ДНФ.

Так как все импликанты участвовали в склеивании, и сокращенная ДНФ состоит из одной простой импликанты, то строить таблицу покрытий нет необходимости, т.е.

.

Задание 6

Для неориентированного графа , у которого ,

а) вычислить числа ;

б) определить хроматическое число .

Решение:

Построим граф:

а) Вычислим числа .

1) :

Используя алгоритм выделения пустых подграфов, построим дерево:

Согласно определению :

.

2) :

Используя алгоритм выделения полных подграфов, построим дерево:

Здесь - полные подграфы. Видно, что мощность носителей всех подграфов равна трем, т.е.

.

3) :

Построим модифицированную матрицу смежности заданного графа G :

1 2 3 4 5 6

.

Находим минимальное число строк, покрывающих все столбцы модифи-цированной матрицы . Таких строк – одна. Следовательно,

.

б) Определим хроматическое число .

Согласно алгоритму минимальной раскраски вершин графа, выделим все пустые подграфы графа G , т.е. построим дерево (оно построено в пункте а) ):

Построим таблицу:

1 2 3 4 5 6

1. {1,4,6} 1 1 1

2. {1,5} 1 1

3. {2,5} 1 1

4. {2,6} 1 1

5. {3} 1

Определяем минимальное число строк, покрывающих все столбцы таблицы. Такими строками могут быть строки 1, 3, 5. Значит,

.

Зададимся красками: для множества вершин - краска синяя (С ), для множества вершин - краска красная ( К ), для множества вершин - краска зеленая ( З ).

Раскрасим вершины графа G :

Задание 7

Для заданной сети :

а) найти величину минимального пути и сам путь от вершины до вершины по алгоритму Дейкстры ;

б) используя алгоритм Форда-Фалкерсона, определить максимальный поток ( v1 – вход , v6 – выход сети ) и указать минимальный разрез, отделяющий v1 от v6 ,

если задана матрица весов (длин, пропускных способностей) Р :

v1 v2 v3 v4 v5 v6

Решение:

Построим сеть:

а) Найдем величину минимального пути и сам путь сети G . Используем для этого алгоритм Дейкстры.

Этап 1. Нахождение длины кратчайшего пути.

.

Шаг 1. Полагаем

1-я итерация.

Шаг 2. Составим множество вершин, непосредственно следующих за с временными метками: . Пересчитываем временные метки этих вершин: ,

.

Шаг 3. Одна из временных меток превращается в постоянную:

Шаг 4. Следовательно, возвращаемся на второй шаг.

2-я итерация.

Шаг 2.

Шаг 3.

Шаг 4. Переход на второй шаг.

3-я итерация.

Шаг 2.

Шаг 3.

Шаг 4.

Переход на второй шаг.

4-я итерация.

Шаг 2.

Шаг 3.

Шаг 4. Переход на второй шаг.

5-я итерация.

Шаг 2.

Шаг 3.

Шаг 4. Конец первого этапа.

Следовательно, длина кратчайшего пути равна .

Этап 2. Построение кратчайшего пути.

1-я итерация.

Шаг 5. Составим множество вершин, непосредственно предшествующих с постоянными метками : Проверим равенство

для этих вершин:

т.е.

т.е.

Включаем дугу в кратчайший путь,

Шаг 6. Возвращаемся на пятый шаг.

2-я итерация.

Шаг 5.

Включаем дугу в кратчайший путь, .

Шаг 6. . Завершение второго этапа.

Следовательно, кратчайший путь построен. Его образует последовательность дуг: .

Окончательно, кратчайший путь от вершины до вершины v6 построен. Его длина (вес) равна . Сам путь образует последовательность дуг:

б) Определим максимальный поток через сеть G. Для этого используем алгоритм Форда-Фалкерсона.

Выбираем произвольно путь из вершины v1 в вершину v6 . Пусть это будет путь . Минимальную пропускную способность на этом пути, равную 10, имеет дуга , т.е. Увеличим на этом пути поток до 10 единиц. Дуга становится насыщенной. Дуга имеет на данный момент пропускную способность, равную 10.

Путь Следовательно, поток на этом пути можно увеличить на 9 единиц. Дуги становятся насыщенными.

Других маршрутов нет (другие маршруты проходят через насыщенные дуги). Поток максимален. Делаем разрез вокруг вершины v1 по насыщенным дугам

и получаем его величину единиц.

8. Используя алгоритм Краскала, построить остов с наименьшим весом для неориентированного взвешенного графа , у которого , если заданы веса (длины) ребер:

□ Построим граф G :

1. Упорядочим ребра в порядке неубывания веса (длины):

2. Возьмем ребро u1 и поместим его в строящийся остов.

Возьмем ребро u2 и поместим его в строящийся остов (т.к. оно не образует с предыдущим ребром цикла).

Берем ребро u3 и помещаем его в строящийся остов (т.к. оно не образует с предыдущими ребрами цикла).

Берем ребро u4 и помещаем его в строящийся остов (т.к. оно не образует с предыдущими ребрами цикла).

Берем ребро u5 и помещаем его в строящийся остов (т.к. оно не образует цикла с предыдущими ребрами).

Ребра не рассматриваем, т.к. они образуют циклы с предыдущими ребрами.

Проверим окончание алгоритма. Число входящих в остов ребер равно 5. Заданный граф имеет п = 6 вершин и . Таким образом, остов содержит все вершины заданного графа G .

Вес (длина) построенного остова

равен .

Литература

1. Горбатов В.А. Основы дискретной математики. – М.: Высшая школа, 1986. – 311 с.

2. Коршунов Ю.М. Математические основы кибернетики. – М.: Энерго атомиздат, 1987. – 496 с.

3. Кузнецов О.П., Адельсон-Вельский Г.М. Дискретная математика для инженера. – М.: Энергоатомиздат, 1988. – 480 с.

4. Шапорев С.Д. Дискретная математика. – СПб.: БХВ-Петербург, 2006. - 400 с.

5. Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. – М.: ФИЗМАТЛИТ, 2005. – 416 с.

6. Хаханов В.И., Чумаченко С.В. Дискретная математика ( конспект теоретического материала). – Харьков: ХНУРЭ, 2003. – 246 с.

7. Богданов А.Е. Курс лекций по дискретной математике.–Северодонецк: СТИ, 2006. – 190 с.

Характеристики

Тип файла
Документ
Размер
4,58 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6392
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее