86071 (574993), страница 2

Файл №574993 86071 (Точные методы численного решения систем линейных алгебраических уравнений) 2 страница86071 (574993) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

uses crt;

const sizemat=10;

type mattype=array[1..sizemat,1..sizemat] of double;

mattype1=array[1..sizemat] of double;

{Процедура для вывода матрицы на экран}

procedure writemat (var a:mattype; n,m:byte);

var i,j:byte;

begin

writeln;

for i:=1 to n do

begin

for j:=1 to m do

write(a[i,j]:7:3,' ');

writeln

end;

end;

{Процедура для ввода значений элементов матрицы}

procedure inputmat (var a:mattype;var d:mattype1; var n:byte);

var i,j:byte;

begin

writeln;

write ('Введите размер матрицы = ');

readln(n);

writeln;

writeln('Введите матрицу:');

writeln;

for i:=1 to n do

for j:=1 to n do

read (a[i,j]);

writeln;

writeln('Введите свободные коэффициенты:');

writeln;

for i:=1 to n do

readln(d[i]);

writeln;

end;

{Процедура получения двух треугольных матриц, произведение которых равно исходной матрице}

procedure getBnC(var a,b,c:mattype; n:byte);

var k,i,a1,j:byte;

begin

for k:=1 to n do

for i:=1 to n do

begin

if k=i then c[k,i]:=1

else c[k,i]:=0;

b[k,i]:=0;

end;

for a1:=1 to n do

begin

if a1=1 then

begin

for i:=1 to n do

b[i,1]:=a[i,1];

for i:=2 to n do

c[1,i]:=a[1,i]/b[1,1];

end

else

begin

k:=a1;

for i:=a1 to n do

begin

b[i,k]:=a[i,k];

for j:=1 to k-1 do

b[i,k]:=b[i,k]-b[i,j]*c[j,k];

end;

i:=a1;

for k:=i+1 to n do

begin

c[i,k]:=a[i,k];

for j:=1 to i-1 do

c[i,k]:=c[i,k]-b[i,j]*c[j,k];

c[i,k]:=c[i,k]/b[i,i];

end;

end;

end;

end;

procedure otvet(var b,c:mattype; d:mattype1; n:byte);

var x,y,s:mattype1;

i,j,k:byte;

w,q:double;

y1,x1:mattype;

begin

for i:=1 to n do

if i=1 then y[i]:=d[i]/b[i,i]

else

begin

w:=0;

for k:=1 to i-1 do

begin

y1[i,k]:=w+b[i,k]*y[k];

w:=y1[i,k];

end;

y[i]:=(d[i]-w)/b[i,i];

end;

for i:=n downto 1 do

if i=n then x[i]:=y[i]

else

begin

q:=0;

for k:=i+1 to n do

begin

x1[i,k]:=q+c[i,k]*x[k];

q:=x1[i,k];

end;

x[i]:=y[i]-q;

end;

writeln;

writeln('Ответ X:');

writeln;

for i:=1 to n do

writeln('x[',i,']= ',x[i]:1:4);

writeln;

end;

{Основная программа}

var a,a1,c,b:mattype;

d:mattype1;

n:byte;

begin

clrscr;

writeln ('Курсовая работа ');

InputMat(a,d,n); {Ввод матрицы A }

getBnC(a,b,c,n);{ Получение треугольных матриц B u C}

Writeln('Матрица B: ');

writemat(b,n,n);

readln;

Writeln('Матрица C: ');

writemat(c,n,n);

otvet(b,c,d,n);

readln;

end.

3.2 Решение в Excel



Заключение

Первым из алгоритмов, посвященным большому разделу решения систем линейных уравнений, представляем алгоритм Халейкого. Это фактически метод решения систем общего вида, конкурирующий по быстродействию с общеизвестным методом Гаусса-Жордана, но позволяющий более эффективно использовать решение.

Если мы можем разложить матрицу линейной системы A в произведение A=L*U(B*C), где L(B) - нижняя, а U(C) - верхняя треугольные матрицы, то решение системы уравнений с произвольной правой частью производится весьма просто, применением двух обратных подстановок. Более того, в отличие от известного метода Гаусса-Жордана, разложенная матрица позволяет быстро решать серии линейных уравнений с различными правыми частями при одной и той же матрице.

Метод Халецкого позволяет провести LU-декомпозицию матрицы примерно за то же число операций, что и "прямая" часть метода Гаусса-Жордана. Итоговые коэффициенты двух треугольных матриц упаковываются в матрицу того же размера, что и A, и на том же месте в памяти. При этом верхняя матрица U размещается в наддиагональной части и на диагонали; нижняя L в поддиагональной части, а диагональные элементы L считаются все равными 1 (без ограничения общности) и не выводятся.

Метод Халецкого исключительно является точным методом, при этом предполагалось, что арифметические операции выполняются над точными числами. Если же метод реализуется на ЭВМ, то появляется вычислительная погрешность, заметим, что даже результаты точных методов являются приближенными из-за неизбежных округлений. Для итерационных процессов также добавляется погрешность метода.

Схема Халецкого удобна для работы на вычислительных машинах, так как при представлении матрицы А в виде произведения нижней треугольной матрицы L и верхней треугольной матрицы U с единичной диагональю, операцию “накопления” можно проводить без записи промежуточных результатов.


Литература

  1. Б.П. Демидович и И.А. Марон. “Основы вычислительной математики”, Москва, 1963г.

  2. Н.С. Бахвалов, Н.П. Жидков, Г.М. Кобельков. “Численные методы”, Москва, 1987г.

  3. Ю.П. Боглаев. “Вычислительная математика и программирование”, Москва, 1990г.


Приложение

Результаты работы программы:

Характеристики

Тип файла
Документ
Размер
20,76 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6458
Авторов
на СтудИзбе
304
Средний доход
с одного платного файла
Обучение Подробнее