85897 (574939), страница 2

Файл №574939 85897 (Методы решения алгебраических уравнений) 2 страница85897 (574939) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Теорема Вейерштрасса: Если на концах некоторого отрезка непрерывная функция принимает значения разных знаков, то на этом отрезке уравнение (36) имеет хотя бы один корень.

Эта теорема выражает геометрически очевидный факт (рис.4), состоящий в том, что если в точках и график непрерывной функции находится в

разных полуплоскостях от оси , то найдётся точка , такая что график этой функции пересекается с осью в точке , т.е. .

а b Замечание: если при этом имеет первую

производную - не меняющую знака, то корень единственный.

Таким образом, мы можем сказать, что уже умеем

Рис. находить отрезок , где находится корень

уравнения (36), но этот отрезок можно уменьшать, основываясь на теореме Вейерштрасса.

Для этого в качестве первого приближения к корню берём середину отрезка , т.е.

(38)

Этой точкой отрезок делится на два равных отрезка: и . Используя теорему Вейерштрасса, устанавливаем в каком из этих отрезков лежит корень, т.е. на концах какого из этих двух отрезков функция принимает разные знаки. С этим отрезком действуем также, т.е. выбираем в качестве второго приближения к корню середину этого отрезка и продолжаем этот итерационный процесс, пока отрезок поиска решения не станет меньше требуемой точности .

Оценка погрешности вычислений по методу деления отрезка пополам производится по очевидной формуле:

(39)

Ясно, что , а относительная погрешность .

Изложенный метод легко программируется и даёт сходимость с точностью (39), хотя при практических вычислениях чаще пользуются комбинациями различных численных методов, добиваясь более быстрой сходимости процесса.

3.2 Метод ложного положения (метод хорд).

В основе метода лежит линейная интерполяция по двум значениям функции, имеющим противоположные знаки. Этот метод зачастую даёт более быструю сходимость, чем метод деления отрезка пополам.

Для иллюстрации алгоритма метода ложного положения (метода хорд), рассмотрим рис.5.

рис.5.

Сначала находим отрезок где

yзаведомо известно, что существует

корень , т.е. , для этого по теореме Вейерштрасса должно быть .

В качестве первого приближения к корню берём , второе приближение . Для нахождения следующего приближения соединяем эти две точки отрезком прямой. Точку пересечения этого отрезка берём в качестве третьего приближения , далее значение функции сравнивается с и , где будут разные знаки, в дальнейшем используется именно тот отрезок вместо , и т.д. Соответствующая итерационная формула имеет вид:

(40)

где и .

Ясно, что эта итерационная формула требует, чтобы , а также и .

Точность вычисления корня методом хорд оценивается неравенством

(41)

предельная относительная погрешность:

(42)

где .

3.3 Метод Ньютона (метод касательных)

Хотя метод ложного положения даёт более быструю сходимость, чем метод деления отрезка пополам, проверка условий применимости метода хорд достаточно громоздка, поэтому рассмотрим метод Ньютона, который иногда называют методом касательных.

В отличие от предыдущих методов здесь не требуется предварительно искать отрезок , где . Для решения уравнения

(43)

в методе Ньютона задаёмся требуемой точностью (абсолютная погрешность). Далее произвольно выбираем начальное приближение . Считаем, что

(44)

для нахождения следующего приближения , где

(45)

воспользуемся формулой Тейлора для :

(46)

Отбрасывая члены разложения, содержащие производные выше первого порядка, получаем уравнение для определения приближённого значения корня :

(47)

т.е.

(48)

Зная , новое, улучшенное значение находим аналогично

(49)

и вообще

(50)

Вычисления надо продолжать до тех пор, пока не достигнем требуемой абсолютной погрешности :

(51)

Предельная относительная погрешность равна:

(52)

Скорость сходимости итерационной формулы Ньютона (50) оценивается неравенством:

(53)

Ясно, что скорость сходимости выше, чем в методе хорд. Однако, здесь так же нужно иметь в виду, что , а также и , а эти условия трудно проверить, что и является отталкивающим фактором для исследователей. Кроме того, для применения метода Ньютона, нужно достаточно точное знание начального приближения .

Здесь, так же как и в методе хорд, легко представить этот процесс геометрически. Взяв начальное приближение , в этой точке проводится касательная к графику функции . Пересечение касательной с осью абсцисс принимается за первое приближение. Далее касательная проводится в точке , пересечение касательной с осью берётся в качестве второго приближения и т.д.


Литература

1. Высшая математика - Сапунов И.С. - М. 2000 г.

Характеристики

Тип файла
Документ
Размер
2,39 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7027
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее