85830 (574924), страница 2
Текст из файла (страница 2)
(
)
є оптимальним. Функція при цьому
Перевірка
Кожній задачі лінійного програмування можна поставити у відповідність двоїсту задачу. Для цього першим кроком необхідно впорядкувати запис вихідної задачі. Оскільки у нас функція мінімізується, то всі умови-нерівності повинні бути вигляду
. Виконання цієї умови досягаємо множенням відповідних умов на (1-). В результаті система обмежень матиме наступний вигляд:
Оскільки вихідна задача є задачею мінімізації, то двоїста буде задачею максимізації. Двоїста задача буде мати три змінні
, оскільки вихідна задача має три обмеження. При цьому вектор, отриманий із коефіцієнтів при невідомих цільової функції вихідної задачі
, співпадає з вектором констант у правих частинах обмежень двоїстої задачі. Аналогічно пов’язані між собою вектори, утворені з коефіцієнтів при невідомих цільової функції двоїстої задачі
, і константи в правих частинах обмежень вихідної задачі. Кожній змінній
двоїстої задачі відповідає і-те обмеження вихідної задачі, і, навпаки, кожній змінній
прямої задачі відповідає j-те обмеження двоїстої задачі. Матриця з коефіцієнтів при невідомих двоїстої задачі
утворюється транспортуванням матриці А, складеної з коефіцієнтів при невідомих вихідної задачі. Якщо на j-ту змінну вихідної задачі накладена умова невід’ємності, то j-те обмеження двоїстої задачі буде нерівністю, в іншому випадку j-те обмеження буде рівністю; аналогічно пов’язані між собою обмеження вихідної задачі і змінні двоїстої.
Складаємо матрицю при невідомих вихідної задачі:
,
тоді матриця при невідомих двоїстої задачі матиме наступний вигляд:
На
накладено умову невід’ємності, тому обмеження двоїстої задачі матимуть вигляд нерівності, а не рівності. Оскільки в початковій задачі всі обмеження мають вигляд нерівності, то накладаємо умови
Враховуючи все наведене, двоїста задача матиме наступний вигляд:
Якщо розглянути першу симплексну таблицю з одиничним додатковим базисом, то можна помітити, що в стовбцях записана вихідна задача, а в рядках – двоїста. Причому оцінками плану вихідної задачі є
, а оцінками плану двоїстої задачі –
З таблиці3, отриманої в результаті рішення вихідної задачі знаходимо:
Завдання №4
Визначити оптимальний план транспортної задачі:
а) побудувати початковий опорний план методом "північно-західного" напрямку;
б) побудувати оптимальний план методом потенціалів:
Нехай в матриці А міститься інформація про кількість продукту в кожному місці виробництва, який необхідно доставити споживачам в кількості записаній в матриці В. Транспортні витрати, пов’язані з перевезенням одиниці продукту із одного місця виробництва одному споживачеві, записані в матриці С. Задані матриці і сказане вище для спрощення сприйняття узагальнимо в таблиці4.
Таблиця4–Поставка продукту із різних місць виробництва різним споживачам і пов’язані з цим витрати
| Виробник | Споживач | Запаси продукту | ||||
|
|
|
|
| |||
|
| 8 | 3 | 3 | 4 | 60 | |
|
| 5 | 2 | 7 | 5 | 20 | |
|
| 5 | 4 | 8 | 2 | 30 | |
|
| 7 | 1 | 5 | 7 | 20 | |
| Потреба в продукті | 40 | 30 | 30 | 15 | 130 115 | |
З таблиці4 видно, що запаси продукту у виробника на складах на 15 одиниць більші ніж необхідно споживачу, тобто маємо транспортну задачу з відкритою моделлю. Для розв’язку такої задачі введемо фіктивного споживача, якому необхідно отримати
одиниць продукту. Всі тарифи на доставку продукту цьому споживачеві будемо вважати рівними нулю, і весь продукт потрібний цьому споживачеві залишаємо у місці виробництва. Для побудови початкового плану перевезень (таблиця5) використаємо метод "північно-західного" напрямку: заповнювати таблицю починаємо з лівого верхнього кута, рухаючись вниз по стовбцю або вправо по рядку (тарифи перевезень напишемо в правому верхньому куту кожної клітини, кількість продукту – в нижньому лівому). В першу клітину заносимо менше з чисел (min(40;60): 40. Тобто потреба в продукті першого споживача повністю задовільнено і інші клітини першого стовпця заповнювати не будемо. Рухаємося далі по першому рядку в другий стовпчик. В цю клітину записуємо менше з 30 і (60-40), тобто пишемо 20. Таким чином перший рядок заповнювати далі не будемо, оскільки запаси першого місця виробництва остаточно вичерпано: з нього ми повністю задовольняємо потребу у продукті першого споживача і частково (20 одиниць, а не 30) другого. Рухаємося по другому стовпчику на другий рядок. Сюди записуємо менше з (30-20) або 20: маємо 10, тобто другому споживачеві ми веземо 20одиниць продукту з першого місця виробництва і 10– з другого. Аналогічно заповнюємо інші клітини.
Таблиця5– Розподіл продукту по споживачам
| Виробник | Споживач | Запаси продукту | ||||
|
|
|
|
|
| ||
|
| 8 | 3 | 3 | 4 | 0 | 60 |
| 40 | 20 | |||||
|
| 5 | 2 | 7 | 5 | 0 | 20 |
| 10 | 10 | |||||
|
| 5 | 4 | 8 | 2 | 0 | 30 |
| 20 | 10 | |||||
|
| 7 | 1 | 5 | 7 | 0 | 20 |
| 5 | 15 | |||||
| Потреба в продукті | 40 | 30 | 30 | 15 | 15 | 130 |
Таким чином, в таблиці5 отримали початковий опорний план, транспортні витрати за яким складають:
Недоліком використаного методу знаходження опорного плану є ігнорування величини тарифів на перевезення продукту.
Для визначення оптимального плану перевезень використаємо метод потенціалів. Для цього кожному виробнику Аі (кожному рядку) ставимо у відповідність деяке число
а кожному споживачу Ві (кожному стовпчику)– деяке число
На основі таблиці5 складемо таблицю6, в якій додамо один стовпчик і один рядок для написання величини параметрів
і
. Їх знаходимо використовуючи першу умову оптимальності транспортної задачі:
(для кожної зайнятої клітини сума потенціалів повинна дорівнювати вартості одиниці перевезення, що записана в цій клітині).
Таблиця6– Перевірка оптимальності опорного плану
| Виробник | Споживач | Запаси продукту |
| ||||||
|
|
|
|
|
| |||||
|
| 8 | 3 | 3 | 4 | 0 | 60 | 0 | ||
| 40 | 20 | ||||||||
|
| 5 | 2 | 7 | 5 | 0 | 20 | -1 | ||
| 10 | 10 | ||||||||
|
| 5 | 4 | 8 - + - + | 2 | 0 | 30 | 0 | ||
| 20 | 10 | ||||||||
|
| 7 | 1 | 5 | 7 | 0 | 20 | 5 | ||
| 5 | 15 | ||||||||
| Потреба в продукті | 40 | 30 | 30 | 15 | 15 | 130 | × | ||
|
| 8 | 3 | 8 | 2 | -5 | × | × | ||
Систему потенціалів можна побудувати лише для невирожденого опорного плану. Такий план містить m+n-1 лінійно незалежних рівнянь виду
з m+n невідомими (де m– кількість постачальників, n– кількість споживачів). Рівнянь на одне менше, ніж невідомих, тому система є невизначеною і для її розв’язку одному невідомому (нехай ним буде u1) придамо нульове значення.














