85782 (574910), страница 2

Файл №574910 85782 (Метод замены неизвестного при решении алгебраических уравнений) 2 страница85782 (574910) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Решение. Очевидно, что х=0 – не корень уравнения. Разделив числитель и знаменатель каждой дроби на х 0, запишем

и, сделав замену получим

Вернёмся к «старой» переменной:

Ответ:

Пример 2. Решить уравнение

Решение. Выделим полный квадрат суммы:

Сгруппируем первый, второй и четвёртый члены:

, или

Введём замену получим

Вернёмся к «старой» переменной:

Ответ:

Пример 3. Решить уравнение

Решение. Положим,

(1)

Тогда исходное уравнение запишется так: Поскольку мы ввели две новые функции, надо найти ещё одно уравнение, связывающее переменные и . Для этого возведём оба равенства (1) в куб и заметим, что Итак, надо решить систему:

Ответ:

Пример 4. Решить уравнение

Решение. Введём замены:

(2)

Тогда исходное уравнение примет вид

Попробуем составить ещё одно уравнение, зависящее от переменных и . Для этого найдём сумму:

Итак, надо решить систему

Ответ:

Пример 5. Решить уравнение

Решение. Заметим, что суммы чисел, стоящих во второй и четвёртой, в первой и третьей скобках, равны, т.е. -7+2=-1–4. Перемножив эти пары скобок, приходим к уравнению

Введём замену: получим Решив квадратное уравнение , находим, что или .

Возвращаемся к исходной переменной и решаем совокупность уравнений:

Ответ: .

Пример 6. Решить уравнение

Решение. Заметим, что произведение чисел, стоящих в первой и третьей, во второй и четвёртой скобках, равны, т.е. Перемножим указанные пары скобок и запишем уравнение

Поскольку – не корень, разделим обе части уравнения на Получим:

Введя замену: запишем исходное уравнение в следующем виде:

т.е.

Отсюда . Вернёмся к исходной переменной:

Первое уравнение совокупности имеет корни . Второе уравнение не имеет корней.

Ответ:

Пример 7. Решить уравнение

Решение. Вид уравнения совсем не подсказывает, что его можно свести к однородному. Преобразуем первый множитель, выделив из него выражение, равное второму множителю, т.е.

Подставляя последнее выражение в исходное уравнение, запишем, что

и далее:

Введя замену: и приведём последнее уравнение к виду . Это однородное уравнение второй степени относительно и . В нём . В самом деле, если , то уравнение приводится к виду , или Но система решений не имеет.

Разделив обе части уравнения на , запишем. Что

Отсюда

Ответ:

Пример 8. Решить уравнение

Решение. Поскольку функция существует при любых значениях , найдём область определения функции

значит, . Ясно, что можно ввести замену или Пусть . Нас интересуют все значения этой функции. Выберем для удобства любой отрезок, на котором функция синус принимает все свои значения, например отрезок

Подставив замену в уравнение, получим:

Вернёмся к «старой» переменной:

Ответ:

Пример 9. Решить уравнение

Решение. Выделим наиболее часто повторяющееся выражение и упростим левую часть исходного уравнения:

(1)

Введём замену тогда уравнение (3) примет вид:

, или ,

При дальнейших упрощениях получим

Применим основное свойство дроби к левой части уравнения, разделив на :

Введём вторую замену и решим уравнение:

Возвращаясь к исходной переменной, придём к совокупности:

Второе уравнение совокупности не имеет решений, а первое даёт два решения, которые и выносятся в ответ.

Ответ:

3. Типизация приёмов введения новых неизвестных при решении алгебраических уравнений

В третьей части курсовой работы осуществим типизацию приёмов введения новых неизвестных при решении алгебраических уравнений.

Введение новых переменных может быть как явным, так и неявным. Классифицируем наши уравнения по способам неявной реализации метода замены переменной:

Использование основного свойства дроби.

Использование основного свойства дроби применяется в уравнениях следующего вида:

где постоянные, .

В таких уравнениях сначала проверяют, является ли корнем уравнения, и производят замену .

Выделение квадрата.

Выделение квадрата двучлена чаще всего встречается при решении уравнений, которые можно привести к такому виду, чтобы одна часть уравнения представляла собой сумму квадратов двучлена.

Переход к системе уравнений.

Этот приём целесообразен при решении уравнений вида

где коэффициенты и равны, противоположны по знаку или отличаются на постоянный множитель.

Раскрытие скобок парами.

Такой метод даёт хороший эффект в уравнениях вида

Где или или

Раскрытие скобок парами и деление обеих частей уравнения.

Раскрытие скобок парами и деление обеих частей уравнения целесообразно применять в случаях, когда перед нами уравнение вида

где , или или .

Сведение к однородному уравнению.

Преобразовав один из множителей и выделив из него выражение, равное второму множителю и подставляя полученное выражение в исходное уравнение, удаётся прийти к однородному уравнению второй степени, т.е. к уравнению вида

где - постоянные, отличные от нуля, а , - многочлены.

Тригонометрическая подстановка.

Тригонометрическая подстановка используется в тех случаях, когда область определения исходного уравнения совпадает с областью значения тригонометрической функции или включается в эту область.

4. Комплект типовых задач, сводящихся к применению метода замены при решении уравнений

Исходя из четвёртой задачи курсовой работы, составим комплект типовых задач, сводящихся к применению метода замены при решении уравнений.

Пример 1.

Решение. ОДЗ уравнения есть все действительные . Сделаем замену неизвестной , где . Тогда исходное уравнение запишется в виде

(1)

, то уравнение (1)

Из решения этих уравнений промежутку принадлежат только . Поэтому

Ответ:

Пример 2.

Решение. Если сделать замену уравнение упрощается, но остаётся иррациональным. Существенного продвижения можно достичь, если ввести новую переменную:

или посторонний корень

Ответ:

Пример 3.

Решение. Видим, что к данному уравнению можно применить ранее указанный нами приём – «раскрытие скобок парами». Суммы чисел, стоящих в первой и четвёртой, во второй и третьей скобках, равны, т.е. 1+5=2+4. Перемножив эти пары скобок, приходим к уравнению:

Введём замену: , получим Решив квадратное уравнение находим, что или

Возвращаемся к исходной переменной и решаем совокупность уравнений:

В первом уравнении совокупности корней нет.

Перепишем второе уравнение:

Ответ:

Пример 4.

Решение. Заметим, что произведение чисел, стоящих в первой и четвёртой, во второй и третьей скобках, равны, т.е. Перемножим указанные пары скобок, запишем уравнение

Так как не есть решение данного уравнения, то, разделив обе части на , получим равносильное исходному уравнение

Делая замену переменных получаем квадратное уравнение

Обратная замена:

Решения первого уравнения этой совокупности есть

,

.

Второе уравнение этой совокупности решений не имеет.

Ответ:

Пример 5.

Решение. Обозначим через . Данное уравнение перепишем в виде . Поскольку не есть решение этого уравнения, то это уравнение равносильно уравнению

Сделаем обратную замену:

Ответ:

Пример 6.

Прежде, чем решить заданное уравнение, продемонстрирую алгоритм решения возвратного уравнения:

– разделить левую и правую части уравнения на . При этом не происходит потери решения, т. к. не является корнем исходного уравнения при

– группировкой привести полученное уравнение к виду

– ввести новую переменную , тогда выполнено т.е. в новых переменных рассматриваемое уравнение является квадратным

– решить его относительно , возвратиться к исходной переменной.

Решение. Исходя из алгоритма решения таких уравнений, разделим левую и правую части уравнения на , получим равносильное ему уравнение

.

Сгруппировав слагаемые, перепишем уравнение в виде

или в виде

Положив получим уравнение

Следовательно, исходное уравнение равносильно совокупности уравнений

Ответ:

Пример 7.

Решение. Обозначим

Таким образом, для и имеем симметричную систему:

Обозначим тогда

Таким образом,

Ответ:

Пример 8.

Решение. Можно в этом уравнении освободиться от знаменателя, проделать все необходимые преобразования и убедиться, что получившееся уравнение четвёртой степени является возвратным. Но лучше это сделать быстрее. Поделим числитель и знаменатель дроби, расположенной в левой части, на . Получим

Положим , тогда

Обратная замена:

или

корней нет.

Характеристики

Тип файла
Документ
Размер
4,68 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6947
Авторов
на СтудИзбе
265
Средний доход
с одного платного файла
Обучение Подробнее
{user_main_secret_data}