48158 (572153), страница 2

Файл №572153 48158 (Представление информации в микропроцессорных средствах. Системы счисления) 2 страница48158 (572153) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Пример 1.2. Привести десятичную дробь N =0.34375 в двоичную систему счисления (q=2).

Операции перевода приведены в табл. 1.3.

Таблица 1.3 – Перевод дробного числа

Шаги

Операция умножения

Произведение

Целая часть (цифра)

Разряд

Примечание

1

2*0.34375

0.6875

0

b-1

Старший разряд

2

2*0.6875

1.375

1

b-2

3

2*0.375

0.75

0

b-3

4

2*0.75

1.5

1

b-4

5

2*0.5

1.0

1

b-5

Младший разряд

Ответ: N(2) =0. b-1 b-2 b-3 b-4 b-5 =0. 01011.

Переводя правильные дроби из одной системы счисления в другую, можно получить дробь в виде бесконечного или расходящегося ряда. В этом случае рекомендуется процесс перевода заканчивать, если появится дробная часть, имеющая во всех разделах нули, или будет достигнута заданная точность перевода (получено требуемое число разрядов результата).

Естественно, что при этом возникает погрешность перевода чисел. В ЭВМ точность перевода обычно ограничивается длиной разрядной сетки, отведенной для представления чисел.

Для удобства преобразования двоичных чисел в десятичные приведем значения веса некоторых разрядов (позиций) двоичной системы счисления в пределах b15 ... b-6 (см. табл. 1.4).

Таблица 1.4 – Веса разрядов двоичного числа

215

214

213

212

211

210

29

28

27

26

25

32768

16384

8192

4096

2048

1024

512

256

128

64

32

24

23

22

21

20

2-1

2-2

2-3

2-4

2-5

2-6

16

8

4

2

1

0.5

0.25

0.125

0.0625

0.03125

0.015625

Пример 1.3 Перевести двоичное число N(2) =1101. 0101 в десятичное

Как и ранее, ход решения отобразим с помощью табл. 1. 5.

Таблица 1.5 – Перевод дробного числа

Шаги

Двоичное число (код)

Вес двоичного разряда

Промежуточные значения

1

1

0

1

0

1

0

1

1

2-4

0,0625

1*0,0625=0,0625

2

2-3

0,125

0*0,125=0

3

2-2

0,25

1*0,25=0,25

4

2-1

0,5

0*0,5=0

5

20

1,0

1*1,0=1,0

6

21

2,0

0*2,0=0

7

22

4,0

1*4,0=4,0

8

23

8,0

1*8,0=8,0

Σ(10)=13. 3125

Ответ: десятичный эквивалент равен сумме промежуточных значений N10=13. 3125.

В информатике и вычислительной технике разработано множество других методов перевода чисел из одной системы счисления в другую, позволяющих получить результат с меньшими затратами времени на преобразования.

Шестнадцатеричные числа. Шестнадцатеричная система счисления (Н-код происходит от hexadecimal), система с основанием 16 использует символы от 0 до F. Такая форма числа удобна для записи, запоминания и ввода с клавиатуры. Компактность достигается путем разделения бит двоичного числа на тетрады (4 бит) и тогда число комбинаций составит 2 =16.

Пример 1.4 Представить двоичное число N2 =110010111010 шестнадцатеричным N16 или NH, где Н указывает на принадлежность системы счисления к шестнадцатеричной.

Решение: надо начать с младшего бита (МБ) и разделить двоичное число на группы из четырех бит. Затем эти группы заменить эквивалентной шестнадцатеричной цифрой. Первая группа 1010=А, вторая - 1011=В, третья - 100=С, следовательно, результат:

1010 1011 1100 =СВА16 или в Н-коде СВАН.

Поскольку обратные преобразования в рассмотренном примере не встречают затруднения, то рассмотрим преобразования чисел из D-кода (десятичного) в Н-код и обратно.

Пример 1.5 Преобразовать десятичное дробное число в Н-код.

Решение представим в двух частях: отдельно для целой части и для дробной.

В первом случае воспользуемся методикой, заложенной в табл. 1.2, проделаем для N =634. 328125 следующие несложные процедуры (рис. 1.2).

мл. разряд

Ш аг 1. 634 : 16 = 39, остаток 1010 = А16

Ш аг 1. 39 : 16 = 2, остаток 710 = 716

ст. разряд

Ш аг 3. 2 : 16, остаток 210 = 216

63410 = 2 7 А16

Рисунок 1.2 – Десятично-шестнадцатеричное преобразование целой части числа

Для преобразования дробной части воспользуемся схемой операций, приведенных в табл. 1.3. А именно, поэтапно (рис. 1.3):

Ш аг 1. 16 · 0. 328125 = 5.25 целая часть "5" ст. разряд


Ш аг 1. 16 · 0. 25 = 4. 0 целая часть "4" мл. разряд

0,328125 = 0. 5 4

Рисунок 1.3 – Десятично-шестнадцатеричный перевод дробной части числа

Пример 1.6 Обратное преобразование шестнадцатеричного числа в десятичное: N16 =5CBA. 27.

Целая часть числа в табл.1.6 получила свой десятичный эквивалент в виде N10 =23738.

Таблица 1.6 – Преобразование шестнадцатеричного числа в десятичное

Степень позиции

163

162

161

160

Результат

Значение позиции

4096

256

16

1

Н-код

5

С

В

А

4096

256

16

1

*

*

*

*

5

12

11

10

D-код

20480

+

3072

+

176

+

10

= 23 73816

Несколько упростив запись по сравнению с табл. 1.6, дробную часть Н-кода можно вычислить по следующей схеме, помня, что 16=0.0625, а 16≈0. 0039:

Н-код 0. 2 7

В ес позиций 16-1 16-2 7·0, 0039 = 0. 0273

2·0, 0625 = 0.1250

сумма дробной части = 0. 152310

Характеристики

Тип файла
Документ
Размер
406,61 Kb
Учебное заведение
Неизвестно

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7028
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее