5086 (567268), страница 2
Текст из файла (страница 2)
где Eв– освещенность в точке М внутри помещения, освещаемой светом видимого через проем участка небосвода ab, лк (рис.1а);
Ен – наружная освещенность в горизонтальной плоскости, равномерно освещаемой диффузным (рассеянным) светом всего небосвода ABC, лк (рис. 1б). Одновременно измеряют наружную освещенность и определенный расчетным путем КЕО сравнивают с нормативным.
Расчет естественного освещения заключается в определении площади световых проемов для помещения. Расчет ведут по следующим формулам:
при боковом освещении
(2)
при верхнем освещении
(3)
где S, Sф – площадь окон и фонарей, м2; Sп–площадь пола , м2; ен – нормированное значение КЕО; Кз – коэффициент запаса (k= l,2–2,0); η, ηф – световые характеристики окна, фонаря; τ0 – общий коэффициент светопропускания (учитывает оптические свойства стекла, потери света в переплетах, из-за загрязнения остекленной поверхности, в несущих конструкциях, солнцезащитных устройствах); r1, r2 – коэффициенты, учитывающие отражение света при боковом и верхнем освещении; kзд – 1 - 1,7 – коэффициент, учитывающий затемнение окон противостоящими зданиями; kф – коэффициент, учитывающий тип фонаря [4].
Нормы естественного освещения промышленных зданий, сведенные к нормированию КЕО, представлены в СНиП II-4–79.
И по аналогии с выбором систем искусственного освещения КЕО определяется в зависимости от:
-
Характера зрительной работы (определяемый объектом различения, то есть размером рассматриваемых деталей отдельных частей, которые необходимо различать в процессе работы)
-
Коэффициента светового климата (m), определяется в зависимости от района расположения здания на территории страны.
-
Коэффициента солнечного климата (с), зависит от ориентации здания относительно сторон света.
-
Системы освещения [1].
Для облегчения нормирования освещенности рабочих мест все зрительные работы по степени точности делятся на восемь разрядов.
СНиП П–4-79 устанавливают требуемую величину КЕО в зависимости от точности работ, вида освещения и географического расположения производства. В табл.1. приведены значения КЕО для зданий, расположенных в III поясе светового климата.
Территория России (и СНГ) делится на пять световых поясов, для которых значения КЕО определяются по формуле:
(4)
где m и с – коэффициенты светового и солнечного климата соответственно.
Для определения соответствия естественной освещенности в производственном помещении требуемым нормам освещенность измеряют при верхнем и комбинированном освещении – в различных точках помещения с последующим усреднением; при боковом – на наименее освещенных рабочих местах [4].
Таблица 1
Значение коэффициента естественной освещенности для производственных помещений
Разряд работ | Характеристика зрительной работы | Значение КЕО | ||
виды работы по степени точности | наименьший размер объекта различения, мм | при верхнем или комбинированном освещении | при боковом освещении в зоне с устойчивым снежным покровом на остальной территории России и СНГ | |
I | Наивысшей точности – лаборатории | менее 0,15 | 10 | 2,8/3,5 |
II | Очень высокой точности | 0,15–0,3 | 7 | 2,0/2,5 |
III | Высокой точности – в цехах синтеза | 0,3–0,5 | 5 | 1,6/2,0 |
IV | Средней точности | 0,5–1,0 | 4 | 1,2/1,5 |
V | Малой точности | 1,0–5,0 | 3 | 0,8/1,0 |
VI | Грубая | более 5,0 | 2 | 0,4/0,5 |
VII | Работы со светящимися материалами и изделиями в горячих цехах | более 0,5 | 3 | 0,8/1,0 |
VIII | Общее постоянное наблюдение за ходом производственного процесса | – | 1 | 0,2/0,3 |
ОТВЕТ НА ВОПРОС №58
Несчастные случаи, вызванные действием электрического тока, условно делят на три группы: электрический удар, электротравма (ожог, ослепление, электрические знаки-метки, металлизация кожи) и комбинированные (сочетание первых двух – электрического удара и электрической травмы).
Электрический удар – наиболее опасный вид поражения, вызывающий паралич дыхания и фибрилляцию сердца (крайне опасные беспорядочные сокращения волокон сердечной мышцы – фибрилл). При этом нарушается нормальная работа сердца, прекращается кровообращение и может наступить смерть.
Исследования показали, что на исход поражения человека электрическим током оказывают влияние следующие факторы: сила тока, величина напряжения, частота и род тока, путь тока, продолжительность действия тока, а также индивидуальные особенности человеческого организма. Рассмотрим каждый из этих факторов в отдельности.
Сила тока, протекающего через тело человека, оказывает решающее влияние на исход поражения. Ток силой 0,0001 А не оказывает физиологических воздействий на организм человека. При силе тока 0,001 А наступает легкое дрожание рук, при 0,002 А – сильное дрожание пальцев рук; при 0,01 А – сильная боль в пальцах и кистях рук; человек с трудом, но может еще оторваться от электродов. Такой ток называется отпускающим. Если сила тока 0,02 А, то наступает неправильное судорожное сокращение мышц и человек самостоятельно оторваться от электродов не может. Такой ток называется неотпускающим.
По данным ток 0,025 А способен вызвать явление проходящего паралича, а ток 0,1 – 0,25 А – смерть.
При поражении электрическим током решающее значение имеет сопротивление человеческого тела. Величина этого сопротивления зависит главным образом от состояния кожного покрова (увлажнения кожи, потовых выделений, наличия порезов, ссадин и т. п.), а также сопротивления внутренних тканей и костей тела.
Рис.2. Схема прикосновения человека к фазному проводу трехфазной четырехпроводной сети
В общем случае, в системе с заземленной нейтралью при нормальном состоянии сети напряжение каждой фазы относительно земли равно фазному напряжению. Прикоснувшийся к любой фазе (рис.2) человек оказывается под фазным напряжением и через его тело пройдет ток
(5)
При этом если заземление исправно, то ток для человека будет не опасен. В случаи если заземление неисправно, то электрический ток может (случай рассмотренный на рис.2) пройти через руку, сердце, другие мягкие ткани, далее через ноги и в землю, то есть электрическая цепь замыкается. Следует иметь ввиду, что мы разобрали только единичный случай, на самом деле каждый случай поражения током индивидуален [1].
ОТВЕТ НА ВОПРОС №78
Процесс тушения горящих веществ сводится к активному воздействию на процесс горения в зоне реакции. В практике тушения пожаров наибольшее распространение получили следующие принципы прекращения горения:
-
изоляция очага горения от воздуха или снижение путем разбавления воздуха негорючими газами концентрации кислорода до значения, при котором не может происходить горение;
-
охлаждение очага горения ниже определенных температур;
-
интенсивное торможение (ингибирование) скорости химической реакции в пламени;
-
механический срыв пламени в результате воздействия на него сильной струи газа или воды;
-
создание условий огнепреграждения, т. е. таких условий, при которых пламя распространяется через узкие каналы.
Перечисленные способы тушения можно применять раздельно, однако на практике чаще всего используют комплексное тушение, причем один из видов является основным. Для тушения горящих веществ применяют огнетушащие средства: воду или ее пары, другие жидкости, инертные газы, пены, галогенсодержащие углеводороды, твердые порошки и т. д. Выбор тех или иных способов и средств тушения в каждом конкретном случае зависит от стадий развития пожара, масштабов загораний, особенностей горения веществ и материалов.
Огнетушащие вещества (средства) должны обладать высоким тушащим эффектом, т. е. малой огнетушащей концентрацией; быть доступными и дешевыми; не оказывать вредного воздействия на организм человека как при использовании, так и хранении; не вызывать повреждения технологического оборудования, приборов и т. д. [2].
Основным средством пожаротушения является вода.
Огнетушащая способность воды обусловливается охлаждающим действием, разбавлением горючей среды образующимися при испарении парами и механическим воздействием на горящее вещество, т. е. срывом пламени охлаждающее действие воды определяется значительными величинами ее теплоемкости и теплоты парообразования. Разбавляющее действие, приводящее к снижению содержания кислорода в окружающем воздухе, обусловливается тем, что объем пара в 1700 раз превышает объем испарившейся воды.
Наряду с этим вода обладает свойствами, ограничивающими область ее применения. Так, при тушении воды нефтепродукты и многие другие горючие жидкости всплывают и продолжают гореть на поверхности, поэтому вода может оказаться малоэффективной при их тушении.
Пены применяют для тушения твердых и жидких веществ, не вступающих во взаимодействие с водой. Огнетушащие свойства пены определяют ее кратностью — отношением объема пены к объему ее жидкой фазы, стойкостью, дисперсностью и вязкостью. На эти свойства пены помимо ее физико-химических свойств оказывают влияние природа горючего вещества, условия протекания пожара и подачи пены.
В зависимости от способа и условий получения огнетушащие пены делят на химические и воздушно-механические. Химическая пена образуется при взаимодействии растворов кислот и щелочей в присутствии пенообразующего вещества и представляет собой концентрированную эмульсию двуокиси углерода в водном растворе минеральных солей, содержащем пенообразующее вещество. Применение химической пены в связи с высокой стоимостью и сложностью организации пожаротушения сокращается.
При тушении пожаров инертными газообразными разбавителями используют двуокись углерода, азот, дымовые или отработавшие газы, пар, а также аргон и другие газы. Огнетушащее действие названных составов заключается в разбавлении воздуха и снижении в нем содержания кислорода до концентрации, при которой прекращается горение. Огнетушащий эффект при разбавлении указанными газами обусловливается потерями теплоты на нагревание разбавителей и снижением теплового эффекта реакции. Особое место среди огнетушащих составов занимает двуокись углерода (углекислый газ), которую применяют для тушения складов ЛВЖ, аккумуляторных станций, сушильных печей, стендов для испытания электродвигателей, электрооборудования и т. д.
Следует помнить, однако, что двуокись углерода нельзя применять для тушения веществ, в состав молекул которых входит кислород, щелочных и щелочноземельных металлов, а также тлеющих материалов. Для тушения этих веществ используют азот или аргон, причем последний применяют в тех случаях, когда имеется опасность образования нитридов металлов, обладающих взрывчатыми свойствами и чувствительностью к удару.
Все описанные выше огнетушащие составы оказывают пассивное действие на пламя. Более перспективны огнетушащие средства, которые эффективно тормозят химические реакции в пламени, т. е. оказывают на них ингибирующее воздействие. Наибольшее применение в пожаротушении нашли огнетушащие составы — ингибиторы на основе предельных углеводородов, в которых один или несколько атомов водорода замещены атомами галоидов (фтора, хлора, брома).
Галоидоуглеводороды плохо растворяются в воде, но хорошо смешиваются со многими органическими веществами. Огнетушащие свойства галоидированных углеводородов возрастают с увеличением молярной массы содержащегося в них галоида.
Наиболее широкое распространение для пожаротушения получили тетрафтордибромэтан (хладон 114В2), бромистый метилен, трифторбромметан (хладон 13В1), а также огнетушащие составы 3, 5, 7, 4НД, СЖБ, БФ (на основе бромистого этила).
В последнее время ограничивают применение составов на основе бромистого этила в связи с тем, что это вещество и его смеси с некоторыми другими веществами, используемыми в указанных выше составах, при определенных условиях могут сами гореть.
В последние годы в качестве средств тушения пожаров применяют порошковые составы на основе неорганических солей щелочных металлов. Они отличаются высокой огнетушащей эффективностью и универсальностью, т. е. способностью тушить любые материалы, в том числе нетушимые всеми другими средствами.