260 (567034), страница 2
Текст из файла (страница 2)
По мере продолжения сжатия температура в недрах звезды повышается, вещество становится более прозрачным, и у звезд с возникают лучистые ядра, но оболочки остаются конвективными. Менее массивные звезды остаются полностью конвективными. Их светимость регулируется тонким лучистым слоем в фотосфере. Чем массивнее звезда и чем выше ее эффективная температура, тем больше у нее лучистое ядро (в звездах с
лучистое ядро возникает сразу). В конце концов, практически вся звезда (за исключением поверхностной конвективной зоны у звезд с массой
) переходит в состояние лучистого равновесия, при котором вся выделяющаяся в ядре энергия переносится излучением.
3. Эволюция на основе ядерных реакций
При температуре в ядрах ~ 106 К начинаются первые ядерные реакции - выгорают дейтерий, литий, бор. Первичное количество этих элементов настолько мало, что их выгорание практически не выдерживает сжатия. Сжатие прекращается, когда температура в центре звезды достигает ~ 106 К и загорается водород, т.к. энергии, выделяющейся при термоядерном горении водорода, достаточно для компенсации потерь на излучение. Однородные звезды, в ядрах которых горит водород, образуют на Г.-Р.д. начальную главную последовательность (НГП). Массивные звезды достигают НГП быстрее звезд малой массы, т.к. у них скорость потерь энергии на единицу массы, а следовательно, и темп эволюции выше, чем у маломассивных звезд. С момента выхода на НГП эволюция звезд происходит на основе ядерного горения. Ядерное горение может происходить до образования элементов группы железа, у которых наибольшая среди всех ядер энергия связи. Эволюционные треки звезд на Г.-Р.д. изображены на рис. 2. Эволюция центральных значений температуры и плотности звезд показана на рис. 3. При К основным источником энергии является реакция водородного цикла, при бОльших T - реакции углерод-азотного (CNO) цикла. Побочным эффектом CNO-цикла является установление равновесных концентраций нуклидов 14N, 12C, 13C - соответственно
95%,
4% и 1% по массе. Преобладание азота в слоях, где происходило горение водорода, подтверждается результатами наблюдений Вольфа-Райе звезд, у которых эти слои оказываются на поверхности в результате потери внеш. слоев. У звезд, в центре которых реализуется CNO-цикл (
), возникает конвективное ядро. Причина этого в очень сильной зависимости энерговыделения от температуры:
. Поток же лучистой энергии ~ T4, следовательно, он не может перенести всю выделяющуюся энергию, и должна возникнуть конвекция, более эффективная, чем лучистый перенос. У наиболее массивных звезд конвекцией охвачено более 50% массы звезд. Значение конвективного ядра для эволюции определяется тем, что ядерное горючее равномерно истощается в области, значительно большей, чем область эффективного горения, в то время как у звезд без конвективного ядра оно вначале выгорает лишь в малой окрестности центра, где температура достаточно высока. Время выгорания водорода заключено в пределах от ~ 1010 лет для
до
лет для
. Время всех последующих стадий ядерного горения не превосходит 10% времени горения водорода, поэтому звезды на стадии горения водорода образуют на Г.-Р.д. густонаселенную область - главную последовательность (ГП). У звезд с
температура в центре никогда не достигает значений, необходимых для загорания водорода, они неограниченно сжимаются, превращаясь в "черные" карлики. Выгорание водорода при водит к увеличению ср. молекулярной массы вещества ядра, и поэтому для поддержания гидростатического равновесия давление в центре должно возрастать, что влечет за собой увеличение температуры в центре и градиента температуры по звезде, а следовательно, и светимости. К увеличению светимости приводит также и уменьшение непрозрачности вещества с ростом температуры. Ядро сжимается для поддержания условий ядерного энерговыделения с уменьшением содержания водорода, а оболочка расширяется из-за необходимости перенести возросший поток энергии от ядра. На Г.-Р.д. звезда перемещается вправо от НГП. Уменьшение непрозрачности приводит к отмиранию конвективных ядер у всех звезд, кроме наиболее массивныых. Темп эволюции массивных звезд наиболее высок, и они первыми покидают ГП. Время жизни на ГП составляет для звезд с
около 10 млн. лет, с
около 70 млн. лет, а с
около 10 млрд. лет.
Когда содержание водорода в ядре уменьшается до 1%, расширение оболочек звезд с
сменяется общим сжатием звезды, необходимым для поддержания энерговыделения. Сжатие оболочки вызывает нагрев водорода в слое, прилегающем к гелиевому ядру, до температуры его термоядерного горения, и возникает слоевой источник энерговыделения. У звезд с массой
, у которых
в меньшей степени зависит от температуры и область энерговыделения не столь сильно концентрируется к центру, стадия общего сжатия отсутствует.
Эволюция звезд после выгорания водорода зависит от их массы. Важнейшим фактором, влияющим на ход эволюции звезд с массой , является вырождение газа электронов при больших плотностях. В вырожденном газе из-за большой плотности число квантовых состояний с малой энергией ограничено в силу принципа Паули и электроны заполняют квантовые уровни с высокой энергией, значительно превышающей энергию их теплового движения. Важнейшая особенность вырожденного газа состоит в том, что его давление p зависит лишь от плотности:
для нерелятивистского вырождения и
для релятивистского вырождения. Давление газа электронов намного превосходит давление ионов. Отсюда следует принципиальный для эволюции звезд вывод: поскольку сила тяготения, действующая на единичный объем релятивистски вырожденного газа,
, зависит от плотности так же, как и градиент давления
, должна существовать предельная масса
, такая, что при
давление электронов не может противодействовать тяготению и начинается сжатие. Предельная масса
. Граница области, в которой газ электронов вырожден, показана на рис. 3 . У звезд малых масс вырождение играет заметную роль уже в процессе образования гелиевых ядер.
Второй фактор, определяющий эволюцию звезд на поздних стадиях, - это нейтринные потери энергии. В звездных недрах при T ~108 К основную роль в рождении нейтрино играют: фотонейтринный процесс , распад квантов плазменных колебаний (плазмонов) на пары нейтрино-антинейтрино (
), аннигиляция пар электрон-позитрон (
) и урка-процессы. Важнейшая особенность нейтрино состоит в том, что вещество звезды для них практически прозрачно и нейтрино беспрепятственно уносят энергию из звезды.
Гелиевое ядро, в котором еще не возникли условия для горения гелия, сжимается. Температура в слоевом источнике, прилегающем к ядру, увеличивается, скорость горения водорода возрастает. Необходимость переноса возросшего потока энергии приводит к расширению оболочки, на что тратится часть энергии. Поскольку светимость звезды не изменяется, температура ее поверхности падает, и на Г.-Р.д. звезда перемещается в область, занимаемую красными гигантамию Время перестройки звезды на два порядка меньше времени выгорания водорода в ядре, поэтому между полосой ГП и областью красных сверхгигантов мало звезд. С уменьшением температуры оболочки возрастает ее прозрачность, вследствие этого появляется внеш. конвективная зона и возрастает светимость звезды.
Отвод энергии из ядра посредством теплопроводности вырожденных электронов и нейтринных потерь у звезд с оттягивает момент загорания гелия. Температура начинает заметно расти лишь тогда, когда ядро становится почти изотермичным. Горение 4He определяет эволюцию звезд с момента, когда энерговыделение превышает потери энергии путем теплопроводности и излучения нейтрино. Это же условие относится к горению всех последующих видом ядерного топлива.
Примечательная особенность звездных ядер из вырожденного газа, охлаждаемых нейтрино, - это "конвергенция" - сближение треков, которые характеризуют соотношение плотности и температуры Tc в центре звезды (рис. 3). Скорость энерговыделения при сжатии ядра определяется скоростью присоединения вещества к нему через слоевой источник, которая зависит только от массы ядра при данном виде топлива. В ядре должен поддерживаться баланс притока и оттока энергии, поэтому в ядрах звезд устанавливается одинаковое распределение температуры и плотности. К моменту загорания 4He масса ядра
в зависимости от содержания тяжелых элементов. В ядрах из вырожденного газа загорание 4He имеет характер теплового взрыва, т.к. энергия, выделяющаяся при горении, идет на увеличение энергии теплового движения электронов, но давление с ростом температуры почти не изменяется до тех пор, пока тепловая энергия электронов не сравняется с энергией вырожденного газа электронов. Тогда вырождение снимается и ядро быстро расширяется - происходит гелиевая вспышка. Гелиевые вспышки, вероятно, сопровождаются потерей звездного вещества. У шаровых звездных скоплений, где массивные звезды уже давно закончили эволюцию и красные гиганты имеют массы
, звезды на стадии горения гелия находятся на горизонтальной ветви Г.-Р.д.