176278 (566968), страница 3

Файл №566968 176278 (Дисперсионный анализ) 3 страница176278 (566968) страница 32016-07-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

m1= ((X – A) ·f / i))/f; m2= ((X – A) / i) 2·f)/f;

где

m1, m2 – соответственно моменты первого и второго порядка;

i – величина интервала;

А – варианта, имеющая наибольшую частоту;

F – значение весов или частот каждой варианты.

Наиболее частото встречаются изделия с расходом сырья на единицу продукции =23 г. Значит А=23 (г.).

Определим величину интервала (визуально видно, что интервалы имееют равную величину):

I=22–20=24–22=26–24=2 (г.)

На основании расчетов представленных в таблице найдем Х и 2:

Х= (3/185) · 2 + 23=23,03 (г.)

2 = 4 · ((265/185) – (3/185) 2)= 4 · (1,43 – 0)=5,72

Найдем среднее квадратическое отклонение:

=√5,72=2,39 (г.)

2. Определим среднее линейное отклонение:

L= 332/185=1,79 (г.)

3. Определим коэффициент вариации:

V=1,79/23,03=0,078 (7,8%).

Вывод

На основании проведенных расчетов можно сделать следующие выводы:

– средний расход сырья на единицу изделия равен ≈ 23 г.

– среднее квадратическое отклонение показывает, что возможно отклонение от среднего расхода сырья на единицу продукции как в сторону увеличения, так и в сторону уменьшения на 2,39 г., что составляет 7,8% (см. коэффициент вариации).

– среднее линейное отклонение также показывает возможное отклонение от среднего расхода сырья на единицу продукции как в сторону увеличения, так и в сторону уменьшения, но менее точно, чем среднее квадратическое отклонение, и составляет 1,79 г.

Лабораторная работа №3


Расчет внутри групповой и межгрупповой дисперсии. Правило сложения дисперсий

Цель – изучить элементы дисперсионного анализа. Получить практические навыки производства на ЭВМ трудоемких расчетов показателей внутригрупповой, межгрупповой дисперсий для различного количества групп. Произвести расчет корреляционного отношения.

Проверить правило сложений дисперсий. Приобрести навыки анализа и практического применения этих показателей.

Выполнение задания предусматривает расчет показателей, характеризующих случайную и систематическую вариации и их роли в общей вариации. Эти показатели широко используются на производстве при количественной оценке влияния различных факторов на те или иные показатели, осуществляемой с помощью дисперсионного анализа.

Общая дисперсия рассматривалась при выполнение заданий 1 и 2. Она характеризует общую вариацию под влиянием всех причин, ее вызывающих и исчисляется по формуле (3).

Для оценки влияния группировочного признака (постоянного фактора) на величину вариаций рассчитывают межгрупповую дисперсию, исчисляемую на основании групповых средних:


U² =((Xi-X)² *fi)/fi (1)

U² – межгрупповая дисперсия;

Xi – групповые средние исчисляются по формуле (1)

X – общее среднее (также исчисляется по формуле (1)

fi – групповые частоты.

При оценке влияния случайных факторов и их роли в общей вариации определяют внутригрупповую дисперсию. Она исчисляется как средняя арифметическая из групповых дисперсий.

² =( ² i *fi)/fi (2)

² внутригрупповая (средняя из групповых) дисперсия;

² групповые дисперсии (исчисляются по формуле (2)).

В математической статистика доказано, что общая дисперсия ² равна сумме внутригрупповой и межгрупповой дисперсий, т.е.

² = ² +U²

Исходя из этого правила, можно определить влияние случайной и систематической дисперсий на общую дисперсию, установить тесноту связи между признаками. Для этого применяется в дисперсионном анализе корреляционное отношение ν:

ν=

Задача 2

Имеются следующие данные о распределении рабочих по возрасту работы двух заводов и объединения

Возраст работы, лет

Количество рабочих

Завод 1

Завод 2

Объединение

До 5 лет

67

32

99

5–10

125

77

202

10–15

162

119

281

15–20

89

70

159

Свыше 20

42

37

79

Определите:

  1. средний возраст работы одного рабочего по каждому заводу и по объединению в целом;

  2. дисперсию для каждого завода (внутригрупповую) и для объединения в целом (общую);

  3. среднюю из внутригрупповых дисперсий;

  4. межгрупповую дисперсию;

  5. корреляционное отклонение.

Проверьте правило сложения дисперсий. Поясните сущность исчисленных показателей.

Решение

1. Определим средний возраст работы одного рабочего по каждому заводу и по объединению в целом.

Так как нам дан интервальный ряд с равными интервалами, то определим сначала середины интервалов и полученные данные занесем в таблицу.

Таблица 1

Возраст работы, лет.

Середина интервала.

Количество рабочих.

Завод 1

Завод 2

Объединение.

До 5

2,5

67

32

99

5 – 10

7,5

125

77

202

10 – 15

12,5

162

119

281

15 – 20

17,5

89

70

159

Свыше 20

22,5

42

37

79

Итого

485

335

820

Средний возраст работы одного рабочего на заводе 1:

Х1 = (2,5 · 67 + 7,5 · 125 + 12,5 · 162 + 17,5 · 89 + 22,5 · 42)/485=11,6 (лет).

Средний возраст работы одного рабочего на заводе 2:

Х2 = (2,5 · 32 + 7,5 · 77 + 12,5 · 119 + 17,5 · 70 + 22,5 · 37)/335=12,5 (лет).

Средний возраст работы одного рабочего на объединении в целом:

Х =(2,5 · 99 + 7,5 · 202 + 12,5 · 281 + 17,5 · 159 + 22,5 · 79)/820=12,0 (лет).

2. Определим дисперсию для каждого завода в отдельности (внутригрупповую) и по объединению в целом:

Дисперсия на заводе 1:

2 1= ((2,5–11,6) 2 · 67 + (7,5–11,6) 2 · 125 +(12,5–11.6) 2 · 163 + (17,5 –11,6)2· 89 + (22,5–11,6) 2 · 42)/485=32,72;

Дисперсия на заводе 1:

22=((2,5–12,5) 2 · 32 + (7,5–12,5) 2· 77 + (12,5–12,5) 2 ·119 + (17,5–12,5) 2· 70+ (22,5–12,5) 2 · 37)/335=31,57

Дисперсия по объединению в целом (общую дисперсию):

u 2=((2,5–12.0) 2 · 99 + (7,5–12,0) 2 · 202 + (12,5–12,0) 2 · 281 + (17,5–12,0) 2 ·159 + (22,5–12,0) 2 · 79)/820=32,46

3. Определим среднюю из внутригрупповых дисперсий:

2 =(32,72+31,57) /2=32,15

4. Определим межгрупповую дисперсию:

2 = ((11,6–12,0) 2 ·485 +(12,5–12,0) 2 ·335)/820=0,20

5. Определим среднее квадратическое отклонение для каждого завода в отдельности и по объединению в целом:

Завод 1:

1=√32,72=5,72 (лет).

Завод 2:

2=√31,57=5,62 (лет).

Объединение:

=√32,46=5.7 (лет).

6. Определим корреляционное отклонение (коэффициент вариации):

Корреляционное отклонение (коэффициент вариации) для завода 1:

ν =√32,72 /11,6=0,493 (49,3%);

Корреляционное отклонение (коэффициент вариации) для завода 2:

ν = √31,57 /12,5=0,449 (44,9%);

Корреляционное отклонение (коэффициент вариации) по объединению в целом (общее):

ν = √32,46 /12,0=0,475 (47,5%).

7. Проверим правило сложения дисперсий:

u 2= 32,17 +0,2=32,37≈32,46

Выводы

На основании проведенных расчетов можно сделать следующие выводы:

– средний возраст работы одного рабочего на заводе 1 равен 11,6 лет, на заводе 2 -12,5 лет и по объединению в целом -12,0 лет.

– в среднем отклонение от среднего возраста работы одного рабочего, как в сторону увеличения, так и в сторону уменьшения по заводу 1 составляет 5,72 лет (или 49,3%), по заводу 2 –5,62 лет (или 44,9%), по объединению в целом –5,7 лет (или 47,5%).

Характеристики

Тип файла
Документ
Размер
867,79 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов лабораторной работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее