151677 (566942), страница 2

Файл №566942 151677 (Електромагнітна сумісність) 2 страница151677 (566942) страница 22016-07-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Рисунок 2.1 – Статистична функція розподілу базового графіка

2.3 Знаходжу ymin мінімальне і ymax максимальне значення випадкової величини згідно з інтегральною імовірністю 95%, якій відповідають імовірності Ex = 0,05 для мінімального і Ex = 0,95 для максимального значень.

ymin=32,5 мм;

ymax=132,5 мм.

З табл. 1 виписую найменшу ум і найбільшу уМ ординати – повинно бути:

ум < ymin, уМ > ymax.

ум=18 мм;

уМ=145 мм.

18<32,5

145>132,5

Умова виконується.

Висновки:

  1. Випадковий графік має невипадкові характеристики.

  2. Використання згідно з ГОСТ 13109-97 практично достовірних значень показників ЕМС дозволяє заощаджувати капітальні вкладення на забезпечення ЕМС.

Практичне заняття № 3

АПРОКСИМАЦІЯ СТАТИСТИЧНОЇ ФУНКЦІЇ РОЗПОДІЛУ

Мета – перевірка можливості апроксимації статистичної (опитної) функції розподілу теоретичними імовірнісними розподілами: рівномірним і нормальним.

Критерій перевірки. Відповідність теоретичної функції розподілу F (у) статистичній (у) виконується за найбільш простим критерієм Колмогорова:

. (3.1)

де N – кількість дослідів (N0=50)

3.1 Рівномірний закон розподілу характеризується прямолінійною функцією розподілу Fп(у) у межах

мм,

мм. (3.2)

де – yc = 85 мм, σy = 33 мм беремо з практичної роботи №2.

Теоретичний діапазон змінення

п = yпМyпм =142-28=114 мм. (3.3)

Наносимо точки а і b з координатами (упм, 0) і (упМ, 1) на графік статистичної функції, який зображений на рис. 3.1. Ці точки з'єднуємо прямою.

Перевіряємо можливість прийняття рівномірного розподілу для апроксимації статистичної функції розподілу за критерієм Колмогорова:

,

3.2 Нормальний закон розподілу характеризується функцією розподілу Fн(у) від – до . Для цього розрахуємо необхідні величини та занесемо їх

до табл. 3.1.

. (3.4)

У верхній частині таблиці у < ус , тому ці значення є від'ємними. З таблиці Б.1 по абсолютним величинам |z| знаходимо значення Φ(|z|) і заносимо їх до табл. 3.1. Шукані значення функції нормального розподілу

при y < yc . (3.5)

У нижній частині таблиці при у > ус аргумент z є позитивним. У цьому випадку знайдені з таблиці Б.1 значення Φ(|z|) заносимо зразу в останній стовпець, оскільки

при y > yc (3.6)

Нижня частина стовпця Φ(|z|) не заповнюється.

Перевіряємо можливість прийняття рівномірного розподілу для апроксимації статистичної функції розподілу за критерієм Колмогорова:

,

Таблиця 3.1 – Функція розподілу нормального закону

y, мм

z

Φ(|z|)

Fн

0

-2,58

0,9951

0,0049

5

-2,42

0,9922

0,0078

10

-2,27

0,9884

0,0116

15

-2,12

0,9826

0,0174

20

-1,97

0,9756

0,0244

25

-1,82

0,9656

0,0344

30

-1,67

0,9525

0,0475

40

-1,36

0,9099

0,0901

50

-1,06

0,8554

0,1446

60

-0,76

0,7764

0,2236

70

-0,45

0,6736

0,3264

80

-0,15

0,5596

0,4404

85

0

0,5

0,5

90

0,15

0,5596

100

0,45

0,6736

110

0,76

0,7764

120

1,06

0,8554

125

1,21

0,8869

130

1,36

0,9099

135

1,52

0,9345

140

1,67

0,9525

145

1,82

0,9656

150

1,97

0,9756

Рисунок 3.1 – Функції розподілу: – статистична, Fп – рівномірного і Fн – нормального законів розподілу

3.3 Зіставляємо розрахункові значення: статистичні і теоретичні. Розходження вважається прийнятим, якщо воно не перевищує 10% від найбільш можливої ординати – 150 мм.

Таблиця 3.2 – Зіставлення розрахункових значень

Розподіл

Розрахункові значення

Розбіжності, %

min, мм

max, мм

min

max

Статистичний

32,5

132,5

Рівномірний

33,5

136,5

0,67

2,9

Нормальний

30,5

139,5

-1,3

4,7

Мінімальні і максимальні розрахункові значення:

  • для рівномірного розподілу

= мм,

мм, (3.7)

де дані беремо з п.3.1,

  • для нормального розподілу

мм,

мм. (3.8)

Розраховуємо відносні розходження:

  • для рівномірного розподілу

,

, (3.9)

  • для нормального розподілу

;

. (3.10)

Висновки:

  1. Згідно до розрахунків рівномірний і нормальний розподіли є прийнятними за критерієм Колмогорова, тому ми приймаємо нормальний закон, як такий, що за фізичним змістом більш відповідає умовам опиту.

  2. За розрахунками абсолютні величини не перевищують допустиме значення розходження 10%.

Практичне заняття № 4

ОЦІНЮВАННЯ ЕМС ЗА НОРМАМИ НА ВІДХИЛЕННЯ НАПРУГИ

Мета – перевірка дотримання норм стандарту [1] на однохвилинні відхилення напруги.

4.1 Базовий графік (гр. з пр. з. № 1) вважається графіком змінення за часом t діючих значень U напруги у відносних одиницях (в.о.). Зв'язок між ординатами у у мм і напругою дається співвідношеннями:

U = 1 + 0,0008·y. (4.1)

4.2 Базовий графік напруги розбиваємо на однохвилинні ділянки: для цього через кожні 40 мм проводимо вертикальні лінії. Для першої ділянки перевіряємо точність візуальної обробки шляхом розрахунку точного значення:

, (4.2)

де підсумовуються квадрати 8 перших значень з табл. 1.

Таким чином, графік уθ(t) є ступеневим з кількістю ступенів Ν = 720/40 =18. Величини ступенів заносимо у стовпець 2 табл. 4,1, у якій i – номер ступеня (стовпець 1). В стовпці 3 їх розташовуємо у порядку зростання – позначення уθз. У стовпець 4 заносять значення функції розподілу

, (4.3)

перше з яких дорівнює 1/40 = 0,025, а останнє – одиниці.

Таблиця 4.1 – Дані для розрахунку однохвилинних напруг

i

yθ, мм

yθз, мм

1

111,2

40

0,056

2

75

50

0,11

3

100

55

0,17

4

50

70

0,22

5

95

70

0,28

6

80

75

0,33

7

115

75

0,39

8

95

75

0,44

9

75

80

0,5

10

100

90

0,56

11

40

95

0,61

12

95

95

0,67

13

70

95

0,72

14

90

100

0,78

15

70

100

0,83

16

100

100

0,89

17

55

111,2

0,94

18

75

115

1

Мінімальне розрахункове значення уθmin та максимальне значення уθmax знаходимо з табл. 4.1. Підставивши їх в одну з формулу (4.1), отримаємо мінімальне Uθmin і максимальне Uθmax розрахункові значення однохвилинних напруг Uθ у в.о. ( в стандарті [1] – Uу):

уθmin =40 мм,

уθmax=115 мм,

Uθmin = 1 + 0,0008· уθmin=1+0,0008·40=1,03,

Uθmax = 1 + 0,0008· уθmax=1+0,0008·115=1,09.

Uθmin ≥ 0,95 – виконується,

Uθmax ≤ 1,05 – не виконується.

Порівняємо значення Umin та U max (які перерахуємо за формулою (4.1) для уmin=32,5 мм та уmax=132,5 мм) з Uθmin і Uθmax:

Umin= 1 + 0,0008·32,5 =1,026,

U max = 1 + 0,0008·132,5=1,11.

Uθmin Umin , UθmaxU max

Рисунок 4.1 – Статистична функція розподілу базового графіка та функція розподілу відхилення напруги

Висновки:

  1. Норми стандарту [1] на однохвилинні відхилення напруги не виконуються, тому що максимальне значення відхилення напруги перевищує допустимі 5%.

  2. Однолінійне усереднення зменшує диапозон змінення графіка.

Характеристики

Тип файла
Документ
Размер
18,39 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов лабораторной работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7023
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее