85742 (566103), страница 3
Текст из файла (страница 3)
Тогда длина интервала группирования
- число интервалов (разрядов), неформализован и зависит от объёма и степени однородности выборки. При
,
2) Находим границы величины
,
3) Находим значение представителей
- середина j-того интервала.
4) Для графического описания выборки по условиям задания необходимо построить гистограмму относительных частот (рис. 1) и эмпирическую функцию распределения (рис. 2)
а) На гистограмме относительных частот высота прямоугольников выбирается равной , основания прямоугольников соответствуют интервалам разбиения. Площадь j-того прямоугольника
равна относительной частоте наблюдений, попавших в j-тый интервал.
Составляем таблицу частот группированной выборки (табл. 2), содержащую столбцы с номерами интервала j, значениями нижней границы (начала интервала) и представителя интервала , числами значений в j-том интервале
, накопленной частоты
, относительной частоты
, накопленной относительной частоты
. Число строк таблицы равно числу интервалов r.
Рис. 1. Гистограмма относительных частот
б) Эмпирическая функция распределения определяется по значениям накопленных относительных частот представителей разрядов:
Функция представляет собой кусочно-постоянную функцию, имеющие скачки в точках, соответствующих серединам интервалов группировки , причём при
, и при
Рис. 2. Эмпирическая функция распределения
5) Составленную ранее таблицу частот группированной выборки (табл. 2) дополняем таблицей расчёта числовых значений и
. Она содержит результаты промежуточных вычислений по формулам
6) После заполнения таблицы 2 рассчитываем значение числовых оценок:
7) Определяем коэффициент вариаций
8) Определяем границы доверительного интервала для математического ожидания по формулам
При заданной доверительной вероятности по таблицам распределения Стьюдента
, поэтому имеем
9) Среднеквадратичное отклонение оценки математического ожидания случайной величины Y равно
10) По виду гистограммы выдвигаем гипотезу Н0 о подчинении случайной величины нормальному закону распределения. Для построения теоретической функции и
составляем таблицу значений (таблица 3) нормальной величины
, определяем функцию Лапласа
, значения функции распределения на концах отрезков
и вероятность попадания
в i-тый интервал по формуле
11) Рисунок 2 с эмпирической функцией распределения дополняем теоретической функцией F(y), значения которой найдены на концах интервалов.
Рис. 3. Эмпирическая , теоретическая
функция распределения.
12) Для проверки согласия выдвинутой гипотезы о о законе распределения экспериментальным данным находим вероятность попадания опытных данных в j-тый интервал от
до
на основе полученных значений функции
на границах интервалов. На построенную раньше гистограмму наносим точки с координатами
и соединяем их плавными линиями (Рис. 4). Сравнивая вид гистограммы и плотность
распределения, необходимо убедиться в их адекватности, близости их характеров.
Рис. 4. Гистограмма относительных частот и теоретическая плотность вероятности .
13) При количественной оценке меры близости эмпирического и теоретического законов распределения можно использовать критерии Пирсона или Колмогорова.
а) по критерию Колмогорова
Максимальное значение модуля разности между значениями эмпирической и теоретической функциями(см. рис. 2) наблюдается в точке, близкой к представителю . Тогда
Вычисляем величину
где r – объём выборки из представителей интервалов
, следовательно
. Так как
, поэтому гипотеза о нормальном распределении по критерию Колмогорова принимается как не противоречащая опытным данным.
б) Для вычисления таблицу 3 дополняем промежуточными результатами
,
,
. Объединяем 1,2,3 и 9,10. Тогда
. Получаем, что
Для нормального закона распределения . Тогда число степеней свободы
. При
имеем
. Поэтому гипотеза по критерию
Пирсона принимается.
14) Составляем точечную диаграмму в декартовой системе координат, где по оси абсцисс откладываем значение , а по оси ординат -
. Пары значений
представляем на диаграмме в виде точек. На диаграмму наносим сетку равноотстоящих горизонтальных и вертикальных прямых. Расстояние между двумя вертикальными прямыми выражает длину
интервала по оси абсцисс, а расстояние между горизонтальными прямыми – длину интервала
по оси ординат.
15) Для вычисления коэффициента корреляции составляется корреляционная таблица (таблица 4). В последние две строки заносятся промежуточные результаты для вычисления точечной оценки коэффициента корреляции
16) Находим
Следовательно, линейные приближения к регрессиям имеют вид:
На рисунке 3 представлены точечная диаграмма и линии регрессии X на Y и Y на X. Расположение точек на диаграмме и небольшое значение коэффициента корреляции указывают на слабую коррелированность случайных величин X и Y между собой.
Таблица 2
№ интервала |
|
|
|
|
|
|
|
|
|
|
1 | 19 | 29,65 | 10 | 10 | 0,1 | 0,1 | 296,5 | -93,933 | 8823,408 | 88234,08 |
2 | 40,3 | 50,95 | 3 | 13 | 0,03 | 0,13 | 152,85 | -72,633 | 5275,553 | 15826,66 |
3 | 61,6 | 72,25 | 10 | 23 | 0,1 | 0,23 | 722,5 | -51,333 | 2635,077 | 26350,77 |
4 | 82,9 | 93,55 | 10 | 33 | 0,1 | 0,33 | 935,5 | -30,033 | 901,9811 | 9019,811 |
5 | 104,2 | 114,85 | 26 | 59 | 0,26 | 0,59 | 2986,1 | -8,733 | 76,26529 | 1982,898 |
6 | 125,5 | 136,15 | 10 | 69 | 0,1 | 0,69 | 1361,5 | 12,567 | 157,9295 | 1579,295 |
7 | 146,8 | 157,45 | 7 | 76 | 0,07 | 0,76 | 1102,15 | 33,867 | 1146,974 | 8028,816 |
8 | 168,1 | 178,75 | 10 | 86 | 0,1 | 0,86 | 1787,5 | 55,167 | 3043,398 | 30433,98 |
9 | 189,4 | 200,05 | 4 | 90 | 0,04 | 0,9 | 800,2 | 76,467 | 5847,202 | 23388,81 |
10 | 210,7 | 221,35 | 10 | 100 | 0,1 | 1 | 2213,5 | 97,767 | 9558,386 | 95583,86 |
11 | 232 |
|
|
|
|
|
|
|
|
|
Сумма | 100 | 1 | 12358,3 | 300429 |
Таблица 3
№ интервала |
|
|
|
|
|
|
|
|
1 | 19 | -1,89849 | -0,4713 | 0,0287 | 0,0368 | 3,68 | 8,4681 | 0,421508 |
2 | 40,3 | -1,51183 | -0,4345 | 0,0655 | 0,0659 | 6,59 | ||
3 | 61,6 | -1,12517 | -0,3686 | 0,1314 | 0,0982 | 9,82 | ||
4 | 82,9 | -0,73852 | -0,2704 | 0,2296 | 0,1336 | 13,36 | 11,2896 | 0,84503 |
5 | 104,2 | -0,35186 | -0,1368 | 0,3632 | 0,1488 | 14,88 | 123,6544 | 8,310108 |
6 | 125,5 | 0,034799 | 0,012 | 0,512 | 0,1508 | 15,08 | 25,8064 | 1,7113 |
7 | 146,8 | 0,421457 | 0,1628 | 0,6628 | 0,1282 | 12,82 | 33,8724 | 2,642153 |
8 | 168,1 | 0,808114 | 0,291 | 0,791 | 0,092 | 9,2 | 30,6916 | 1,6626 |
9 | 189,4 | 1,194772 | 0,383 | 0,883 | 0,0599 | 5,99 | ||
10 | 210,7 | 1,58143 | 0,4429 | 0,9429 | 0,0327 | 3,27 | ||
11 | 232 | 1,968087 | 0,4756 | 0,9756 | ||||
Сумма | 13,5927 |