Главная » Просмотр файлов » СНиП II-23-81 (1990)

СНиП II-23-81 (1990) (524625), страница 12

Файл №524625 СНиП II-23-81 (1990) (СНиП II-23-81) 12 страницаСНиП II-23-81 (1990) (524625) страница 122013-09-18СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 12)

РАСЧЕТ НА ПРОЧНОСТЬ

8.1. Расчет на прочность листовых конструкций (оболочек вращения), находящихся в безмоментном напряженном состоянии, следует выполнять по формуле

, (93)

где sx и sy - нормальные напряжения по двум взаимно перпендикулярным направлениям;

gc - коэффициент условий работы конструкций, назначаемый в соответствии с требованиями СНиП по проектированию сооружений промышленных предприятий.

При этом абсолютные значения главных напряжений должны быть не более значений расчетных сопротивлений, умноженных на gc.

8.2. Напряжения в безмоментных тонкостенных оболочках вращения (рис. 17), находящихся под давлением жидкости, газа или сыпучего материала, следует определять по формулам:

; (94)

(95)

где s1 и s2 - соответственно меридиональное и кольцевое напряжения;

r1 и r2 - радиусы кривизны в главных направлениях срединной поверхности оболочки;

p - расчетное давление на единицу поверхности оболочки;

t - толщина оболочки;

F - проекция на ось z-z оболочки полного расчета давления, действующего на часть оболочки abc (рис. 17);

r и b - радиус и угол, показанные на рис. 17.

Рис. 17. Схема оболочки вращения Рис. 18. Схема конической оболочки вращения

8.3. Напряжения в замкнутых безмоментных тонкостенных оболочках вращения, находящихся под внутренним равномерным давлением, следует определять по формулам:

для цилиндрических оболочек

и ; (96)

для сферических оболочек

; (97)

для конических оболочек

и , (98)

где p – расчетное внутреннее давление на единицу поверхности оболочки;

r – радиус срединной поверхности оболочки (рис. 18);

b - угол между образующей конуса и его осью zz (рис. 18).

8.4. В местах изменения формы или толщины оболочек, а также изменения нагрузки должны быть учтены местные напряжения (краевой эффект).

Расчет на устойчивость

8.5. Расчет на устойчивость замкнутых круговых цилиндрических оболочек вращения, равномерно сжатых параллельно образующим, следует выполнять по формуле

s1 £ gcscr1, (99)

где s1 – расчетное напряжение в оболочке;

scr1 – критическое напряжение, равное меньшему из значений yRy или cEt/r (здесь r – радиус срединной поверхности оболочки; t – толщина оболочки).

Значения коэффициентов y при 0 < r/t £ 300 следует определять по формуле

. (100)

Значения коэффициентов c следует определять по табл. 31.

Таблица 31

r/t

100

200

300

400

600

800

1000

1500

2500

c

0,22

0,18

0,16

0,14

0,11

0,09

0,08

0,07

0,06

В случае внецентренного сжатия параллельно образующим или чистого изгиба в диаметральной плоскости при касательных напряжениях в месте наибольшего момента, не превышающих значений 0,07Е (t/r)3/2, напряжение scr1 должно быть увеличено в (1,1 - 0,1 1/s1) раз где 1 – наименьшее напряжение (растягивающие напряжения считать отрицательными).

8.6. В трубах, рассчитываемых как сжатые или сжато-изгибаемые стержни, при условной гибкости должно быть выполнено условие

. (101)

Такие трубы следует рассчитывать на устойчивость в соответствии с требованиями разд. 5 настоящих норм независимо от расчета на устойчивость стенок. Расчет на устойчивость стенок бесшовных или электросварных труб не требуется, если значение r/t не превышает половины значений, определяемых по формуле (101).

8.7. Цилиндрическая панель, опертая по двум образующим и двум дугам направляющей, равномерно сжатая вдоль образующих, при b2/(rt) £ 20 (где b – ширина панели, измеренная по дуге направляющей) должна быть рассчитана на устойчивость как пластинка по формулам:

при расчетном напряжении s £ 0,8Ry

; (102)

при расчетном напряжении s = Ry

. (103)

При 0,8Ry < s < Ry наибольшее отношение b/t следует определять линейной интерполяцией.

Если b2/(rt) > 20, панель следует рассчитывать на устойчивость как оболочку согласно требованиям п. 8.5.

8.8*. Расчет на устойчивость замкнутой круговой цилиндрической оболочки вращения при действии внешнего равномерного давления p, нормального к боковой поверхности, следует выполнять по формуле

s2 £ gcscr2 (104)

где s2 = pr/t – расчетное кольцевое напряжение в оболочке;

scr2 – критическое напряжение, определяемое по формулам:

при 0,5 £ l/r £ 10

scr2 = 0,55E(r/l)(t/r)3/2; (105)

при l/r ³ 20

scr2 = 0,17E(t/r)2; (106)

при 10 < l/r < 20 напряжение scr2 следует определять линейной интерполяцией.

Здесь l длина цилиндрической оболочки.

Та же оболочка, но укрепленная кольцевыми ребрами, расположенными с шагом s ³ 0,5r между осями, должна быть рассчитана на устойчивость по формулам (104) – (106) с подстановкой в них значения s вместо l.

В этом случае должно быть удовлетворено условие устойчивости ребра в своей плоскости как сжатого стержня согласно требованиям п. 5.3 при N = prs и расчетной длине стержня lef = 1,8r, при этом в сечение ребра следует включать участки оболочки шириной с каждой стороны от оси ребра, а условная гибкость стержня не должна превышать 6,5.

При одностороннем ребре жесткости его момент инерции следует вычислять относительно оси, совпадающей с ближайшей поверхностью оболочки.

8.9. Расчет на устойчивость замкнутой круговой цилиндрической оболочки вращения, подверженной одновременному действию нагрузок, указанных в пп. 8.5 и 8.8*, следует выполнять по формуле

, (107)

где scr1 должно быть вычислено согласно требованиям п. 8.5, а scr2 – согласно требованиям п. 8.8*.

8.10. Расчет на устойчивость конической оболочки вращения с углом конусности b £ 60°, сжатой силой N вдоль оси (рис. 19) следует выполнять по формуле

N £ gcNcr, (108)

где Ncr – критическая сила, определяемая по формуле

Ncr = 6,28rmtscr1cos2b, (109)

здесь t – толщина оболочки;

scr1 – значение напряжения, вычисленное согласно требованиям п. 8.5 с заменой радиуса r радиусом rm, равным

. (110)

Рис. 19. Схема конической оболочки вращения под действием

продольного усилия сжатия

8.11. Расчет на устойчивость конической оболочки вращения при действии внешнего равномерного давления p, нормального к боковой поверхности, следует выполнять по формуле

s2 £ gcscr2, (111)

здесь s2 = prm /t – расчетное кольцевое напряжение в оболочке;

scr2 – критическое напряжение, определяемое по формуле

scr2 = 0,55E(rm /h)(t/rm)3/2, (112)

где h – высота конической оболочки (между основаниями);

rm – радиус, определяемый по формуле (110).

8.12. Расчет на устойчивость конической оболочки вращения, подверженной одновременному действию нагрузок, указанных в пп. 8.10 и 8.11 следует выполнять по формуле

, (113)

где значения Ncr и scr2 следует вычислять по формулам (109) и (112).

8.13. Расчет на устойчивость полной сферической оболочки (или ее сегмента) при r/t £ 750 и действии внешнего равномерного давления p, нормального к ее поверхности, следует выполнять по формуле

s £ gcscr, (114)

где s = pr/2t – расчетное напряжение;

scr = 0,1Et/r – критическое напряжение, принимаемое не более Ry;

r – радиус срединной поверхности сферы.

Основные требования к расчету металлических

мембранных конструкций

8.14. При расчете мембранных конструкций опирание кромок мембраны на упругие элементы контура следует считать шарнирным по линии опирания и способным передавать сдвиг на элементы контура.

8.15. Расчет мембранных конструкций должен производиться на основе совместной работы мембраны и элементов контура с учетом их деформированного состояния и геометрической нелинейности мембраны.

8.16. Нормальные и касательные напряжения, распределенные по кромкам мембраны, следует считать уравновешенными сжатием и изгибом опорного контура в тангенциальной плоскости.

При расчете опорных элементов контура мембранных конструкций следует учитывать:

изгиб в тангенциальной плоскости;

осевое сжатие в элементах контура;

сжатие, вызываемое касательными напряжениями по линии контакта мембраны с элементами контура;

изгиб в вертикальной плоскости.

8.17. При прикреплении мембраны с эксцентриситетом относительно центра тяжести сечения элементов контура кроме факторов, указанных в п. 8.16, при расчете контуров следует учитывать кручение.

8.18. При определении напряжений в центре круглых в плане плоских мембран допускается принимать, что опорный контур является недеформируемым.

8.19. Для определения напряжений в центре эллиптической мембраны, закрепленной на деформируемом контуре, допускается применять требования п. 8.18 при условии замены значения радиуса значением большей главной полуоси эллипса (отношение большей полуоси к меньшей должно быть не более 1,2).

9. Расчет элементов стальных конструкций

Характеристики

Тип файла
Документ
Размер
2,99 Mb
Материал
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов стандарта

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6451
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее