Главная » Просмотр файлов » Рассел С., Норвиг П. Искусственный интеллект. Современный подход (2-е изд., 2006)

Рассел С., Норвиг П. Искусственный интеллект. Современный подход (2-е изд., 2006) (1245267), страница 16

Файл №1245267 Рассел С., Норвиг П. Искусственный интеллект. Современный подход (2-е изд., 2006) (Рассел С., Норвиг П. Искусственный интеллект. Современный подход (2-е изд., 2006)) 16 страницаРассел С., Норвиг П. Искусственный интеллект. Современный подход (2-е изд., 2006) (1245267) страница 162021-01-15СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 16)

хк имеются два пика в точках хх и хм такие, что: а) х, + ха = и + 28 (гдеи — масса всей молекУлы); б) вточкех1 — 28 — высокий пик; в) в точке ха — 28 — высокий пик; г) по меньшей мере в одной из точек х1 и ха — высокий пик, ЕЬип существует кетоновая подгруппа. Применение способа, предусматривающего распознавание того, что молекула содержит какие-то конкретные подструктуры, позволило весьма значительно сократить количество возможных кандидатов, подлежащих проверке. В конечном итоге программа Рената[ оказалась очень мощной, и причины этого описаны ниже.

Все относящиеся к делу теоретические знания, требуемые для решения указанных проблем, были преобразованы в [компоненте предсказания спектра1 из наиболее общей формы (из "исходных принципов") в эффективные специальные формы (в "рецепты поваренной книги") [4581. Значение программы Репбга! состояло в том, что это была первая успешно созданная экспертная система, основанная на широком использовании знаний: ее способность справляться с поставленными задачами была обусловлена применением большого количества правил специального назначения. В более поздних системах также широко применялся основной принцип подхода, реализованного Маккарти в программе Абу[се Та[сег, — четкое отделение знаний (в форме правил) от компонента, обеспечивающего проведение рассуждений.

Руководствуясь этим опытом, Фейгенбаум и другие специалисты из Станфордского университета приступили к разработке проекта эвристического программирования (Нецг[зг!с Ргойгатпш[пй Рго)ес( — НРР), целью которого было исследование того, в какой степени созданная ими новая методология Ъ. экспертных систем может быть применена в других областях интеллектуальной деятельности человека. На очередном этапе основные усилия были сосредоточены в области медицинской диагностики. Фейгенбаум, Бьюкенен и доктор Эдвард Шортлифф разработали 64 Часть 1.

Искусственный интеллект программу Мус!и для диагностики инфекционных заболеваний кровеносной системы. После ввода в нее примерно 450 правил программа Мус!и приобрела способность работать на уровне некоторых экспертов, а также показала значительно более лучшие результаты по сравнению с врачами, имеющими не такой большой стаж. Она также обладала двумя важными отличительными особенностями по сравнению с программой Оепога!.

Во-первых, в отличие от правил Оепг!га1 не существовала общая теоретическая модель, на основании которой мог бы осуществляться логический вывод правил Мус!и. Для выявления этих правил приходилось широко применять знания, полученные от экспертов, которые, в свою очередь, приобретали эти знания с помощью учебников, других экспертов и непосредственного опыта, накопленного путем изучения практических случаев. Во-вторых, в этих правилах приходилось учитывать ту степень неопределенности, которой характеризуются знания в области медицины.

В программе Мус!и применялось исчисление неопределенностей на основе так называемых коэффициентов уверенности (см. главу 13), которое (в то время) казалось вполне соответствующим тому, как врачи оценивают влияние объективных данных на диагноз. Важность использования знаний в проблемной области стала также очевидной и для специалистов, которые занимались проблемами понимания естественного языка.

Хотя система понимания естественного языка Биге!и, разработанная Тэрри Виноградом, стала в свое время предметом всеобщего восхищения, ее зависимость от результатов синтаксического анализа вызвала появление примерно таких же проблем, которые обнаружились в ранних работах по машинному переводу.

Эта система была способна преодолеть неоднозначность и правильно понимала ссылки, выраженные с помошью местоимений, но это в основном было связано с тем, что она специально предназначалась только для одной области — для мира блоков. Некоторые исследователи, включая Юджина Чарняка, коллегу и аспиранта Винограда в Массачусетсском технологическом институте, указывали, что для обеспечения надежного понимания языка потребуются общие знания о мире и общий метод использования этих знаний. Работавший в Йельском университете Роджер Шенк, лингвист, ставший исследователем в области искусственного интеллекта, еше более ярко выразил эту мысль, заявив, что "такого понятия, как синтаксис, не сушествует".

Это заявление вызвало возмущение многих лингвистов, но послужило началом полезной дискуссии. Шенк со своими студентами создал ряд интересных программ [425], [1358], [1359], [1590]. Задача всех этих программ состояла в обеспечении понимания естественного языка. Но в них основной акцент был сделан в меньшей степени на языке как таковом и в большей степени на проблемах представления и формирования рассуждений с помошью знаний, требуемых для понимания языка. В число рассматриваемых проблем входило представление стереотипных ситуаций [314], описание организации человеческой памяти [829], [! 287], а также понимание планов и целей [1591]. В связи с широким ростом количества приложений, предназначенных для решения проблем реального мира, столь же широко возрастали потребности в создании работоспособных схем представления знаний.

Было разработано большое количество различных языков для представления знаний и проведения рассуждений. Некоторые из них были основаны на логике, например, в Европе получил распространение язык Рго1о8, а в Соединенных Штатах широко применялось семейство языков Р!аппег. В других языках, основанных на выдвинутой Минским цдее Ъ. фреймов 65 Глава 1. Введение 1!053], был принят более структурированный подход, предусматривающий сбор фактов о конкретных типах объектов и событий, а также упорядочение этих типов в виде крупной таксономической иерархии, аналогичной биологической таксономии.

Превращение искусственного интеллекта в индустрию (период с 1980 года по настоящее время) Первая успешно действующая коммерческая экспертная система, К!, появилась в компании РЕС (Р!8!га! ЕЧц!распев! Со!рога!юп) !1026]. Эта программа помогала составлять конфигурации для выполнения заказов на новые компьютерные системы; к 1986 году она позволяла компании РЕС экономить примерно 40 миллионов долларов в год.

К 1988 году группой искусственного интеллекта компании РЕС было развернуто 40 экспертных систем, а в планах дальнейшего развертывания было предусмотрено еще большее количество таких систем. В компании Рц Роп! применялось 100 систем, в разработке находилось еще 500, а достигнутая экономия составляла примерно 1О миллионов долларов в год. Почти в каждой крупной корпорации США была создана собственная группа искусственного интеллекта и либо применялись экспертные системы, либо проводились их исследования. В 1981 году в Японии было объявлено о развертывании проекта создания компьютера "пятого поколения" — 1О-летнего плана по разработке интеллектуальных компьютеров, работающих под управлением языка Рго!ой. В ответ на это в Соединенных Штатах была сформирована корпорация М!сгое1ес!гоп!сз апд Сотригег Тесово!оку Со!рога!юп (МСС) как научно-исследовательский консорциум, предназначенный для обеспечения конкурентоспособности американской промышленности.

И в том и в другом случае искусственный интеллект стал частью общего плана, включая его применение для проектирования микросхем и проведения исследований в области человеко-машинного интерфейса. Но амбициозные цели, поставленные перед специалистами в области искусственного интеллекта в проектах МСС и компьютеров пятого поколения, так и не были достигнуты. Тем не менее в Британии был выпущен отчет Олви (А1чеу) ", в котором предусматривалось возобновление финансирования, урезанного на основании отчета Лайтхилла. В целом в индустрии искусственного интеллекта произошел бурный рост, начиная с нескольких миллионов долларов в 1980 году и заканчивая миллиардами долларов в 1988 году. Однако вскоре после этого наступил период, получивший название "зимы искусственного интеллекта", в течение которого пострадали многие компании, поскольку не сумели выполнить своих заманчивых обещаний.

Возвращение к нейронным сетям (период с 1986 года по настоящее время) Хотя основная часть специалистов по компьютерным наукам прекратила исследования в области нейронных сетей в конце 1970-х годов, работу в этой области продолжили специалисты из других научных направлений. Такие физики, как Джон Хопфилд ]674], использовали методы из статистической механики для анализа ы Чтобы нс ставить себя в затруднительное положение, авторы этого отчета изобрели новую научную область, получившую название "интеллектуальные системы, основанные на знаниях" (!и!с!!!асс! Кпов!ебае-Ваьсб 5унспм — !Кпб), поскольку термин "искусственный интеллект" бьп уже официально отменен. Часть!.

Искусственный интеллект свойств хранения данных и оптимизации сетей, рассматривая коллекции узлов как коллекции атомов. Психологи, включая Дэвида Румельхарта и Джефа Хинтона, продолжали исследовать модели памяти на основе нейронных сетей. Как будет описано в главе 20, настоящий прорыв произошел в середине 1980-х годов, когда по меньшей мере четыре разные группы снова открыли алгоритм обучения путем обратного распространения, впервые предложенный в 19б9 году Брайсоном и Хо [201].

Характеристики

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее