Комаров_942 (1231763), страница 5
Текст из файла (страница 5)
Следовательно, остается недостаточно разработанным вопрос о практической применимости тех или иных теоретических методов распознавания для решения практических задач при реальных (т.е. довольно значительных) размерностях данных и на реальных современных компьютерах [5].
Это задачи:
- определения информационного вклада признаков в информационный портрет обобщенного образа;
- кластерно-конструктивный анализ обобщенных образов;
- определение семантической нагрузки признака;
- семантический кластерно-конструктивный анализ признаков;
- содержательное сравнение обобщенных образов классов друг с другом и признаков друг с другом (когнитивные диаграммы, в т.ч. диаграммы Мерлина).
Метод, который позволил достичь решения этих задач, также отличает основанную на нем перспективную систему от других систем, как компиляторы отличаются от интерпретаторов, так как благодаря формированию обобщенных образов в этой перспективной системе достигается независимость времени распознавания от объемов обучающей выборки [6]. Известно, что именно существование этой зависимости приводит к практически неп
Параметр length. Данный параметр ограничивает минимально допустимую длину границ в пикселях. Как правило, короткие рёбра не очень надёжны и могут быть результатом зашумления изображений. Целесообразно ограничить минимальную длину границ, как при обучении, так и при анализе. Данный параметр может принимать значения от 0 и до бесконечности. Параметр 0 означает, что минимальная длина границ неограниченна. По умолчанию используется значение 50.
- классификация методов распознавания;
- области применения методов распознавания;
- классификация ограничений методов распознавания.
Таблица 1 – Сводная таблица классификации интенсиальных методов распознавания, сравнения их областей применения и ограничений
| Классификация методов распознавания | Область применения | Ограничения (недостатки) |
| Методы, основанные на оценках плотностей распределения значений признаков (или сходства и различия объектов) | Задачи с известным распределением, как правило, нормальным, необходимость набора большой статистики | Необходимость перебора всей обучающей выборки при распознавании, высокая чувствительность к непредставительности обучающей выборки и артефактам |
| Методы, основанные на предположениях о классе решающих функций | Классы должны быть хорошо разделяемыми, система признаков - ортонормированной | Должен быть заранее известен вид решающей функции. Невозможность учета новых знаний о корреляциях между признаками |
| Логические методы Параметр length. Данный параметр ограничивает минимально допустимую длину границ в пикселях. Как правило, короткие рёбра не очень надёжны и могут быть результатом зашумления изображений. Целесообразно ограничить минимальную длину границ, как при обучении, так и при анализе. Данный параметр может принимать значения от 0 и до бесконечности. Параметр 0 означает, что минимальная длина границ неограниченна. По умолчанию используется значение 50. | Задачи небольшой размерности пространства признаков | При отборе логических решающих правил (коньюнкций) необходим полный перебор. Высокая вычислительная трудоемкость |
| Лингвистические (структурные) методы | Задачи небольшой размерности пространства признаков | Задача восстановления грамматики по некоторому множеству высказываний, является трудно формализуемой. Нерешенность теоретических проблем |
Таблица 2 – Сводная таблица классификации экстенсиальных методов распознавания, сравнения их областей применения и ограничений
| Классификация методов распознавания | Область применения | Ограничения (недостатки) |
| Метод сравнения с прототипом | Задачи небольшой размерности пространства признаков | Высокая зависимость результатов классификации от меры расстояния (метрики). Неизвестность оптимальной метрики |
| Метод k ближайших соседей | Задачи небольшой размерности по количеству классов и признаков | Высокая зависимость результатов классификации от меры расстояния (метрики). Необходимость полного перебора обучающей выборки при распознавании. Вычислительная трудоемкость |
| Алгоритмы вычисления оценок (голосования) АВО | Задачи небольшой размерности по количеству классов и признаков | Зависимость результатов классификации от меры расстояния (метрики). Необходимость полного перебора обучающей выборки при распознавании. Высокая техническая сложность метода |
| Коллективы решающих правил (КРП) | Задачи небольшой размерности по количеству классов и признаков | Очень высокая техническая сложность метода, нерешенность ряда теоретических проблем, как при определении областей компетенции частных методов, так и в самих частных методах |
Т
Параметр length. Данный параметр ограничивает минимально допустимую длину границ в пикселях. Как правило, короткие рёбра не очень надёжны и могут быть результатом зашумления изображений. Целесообразно ограничить минимальную длину границ, как при обучении, так и при анализе. Данный параметр может принимать значения от 0 и до бесконечности. Параметр 0 означает, что минимальная длина границ неограниченна. По умолчанию используется значение 50.
1.3 Проблемы и перспективы распознавания образов
В целом проблема распознавания образов состоит из двух частей: обучения и распознавания. Обучение осуществляется путем показа отдельных объектов с указанием их принадлежности тому или другому образу. В результате обучения распознающая система должна приобрести способность реагировать одинаковыми реакциями на все объекты одного образа и различными - на все объекты различных образов. Очень важно, что процесс обучения должен завершиться только путем показов конечного числа объектов без каких-либо других подсказок. В качестве объектов обучения могут быть либо картинки, либо другие визуальные изображения (буквы), либо различные явления внешнего мира, например звуки, состояния организма при медицинском диагнозе, состояние технического объекта в системах управления и др. Важно, что в процессе обучения указываются только сами объекты и их принадлежность образу. За обучением следует процесс распознавания новых объектов, который характеризует действия уже обученной системы. Автоматизация этих процедур и составляет проблему обучения распознаванию образов. В том случае, когда человек сам разгадывает или придумывает, а затем навязывает машине правило классификации, проблема распознавания решается частично, так как основную и главную часть проблемы (обучение) человек берет на себя [8].
Проблема о
Параметр length. Данный параметр ограничивает минимально допустимую длину границ в пикселях. Как правило, короткие рёбра не очень надёжны и могут быть результатом зашумления изображений. Целесообразно ограничить минимальную длину границ, как при обучении, так и при анализе. Данный параметр может принимать значения от 0 и до бесконечности. Параметр 0 означает, что минимальная длина границ неограниченна. По умолчанию используется значение 50.
Сюда относятся не только задачи распознавания зрительных и слуховых образов, но и задачи распознавания сложных процессов и явлений, возникающих, например, при выборе целесообразных действий руководителем предприятия или выборе оптимального управления технологическими, экономическими, транспортными или военными операциями. В каж
Параметр length. Данный параметр ограничивает минимально допустимую длину границ в пикселях. Как правило, короткие рёбра не очень надёжны и могут быть результатом зашумления изображений. Целесообразно ограничить минимальную длину границ, как при обучении, так и при анализе. Данный параметр может принимать значения от 0 и до бесконечности. Параметр 0 означает, что минимальная длина границ неограниченна. По умолчанию используется значение 50.
Прежде чем начать анализ какого-либо объекта, нужно получить о нем определенную, каким-либо способом упорядоченную информацию. Такая информация представляет собой характеристику объектов, их отображение на множестве воспринимающих органов распознающей системы.
Но каждый объект наблюдения может воздействовать по-разному, в зависимости от условий восприятия. Например, какая-либо буква, даже одинаково написанная, может в принципе как угодно смещаться относительно воспринимающих органов. Кроме того, объекты одного и того же образа могут достаточно сильно отличаться друг от друга и, естественно, по-разному воздействовать на воспринимающие органы.
Каждое отображение какого-либо объекта на воспринимающие органы распознающей системы, независимо от его положения относительно этих органов, принято называть изображением объекта, а множества таких изображений, объединенные какими-либо общими свойствами, представляют собой образы. При решении задач управления методами распознавания образов вместо термина "изображение" применяют термин "состояние". Состояние - это определенной формы отображение измеряемых текущих (или мгновенных) характеристик наблюдаемого объекта. Совокупность состояний определяет ситуацию. Понятие "ситуация" является аналогом понятия "образ". Но эта аналогия не полная, так как не всякий образ можно назвать ситуацией, хотя всякую ситуацию можно назвать образом. Ситуацией принято называть некоторую совокупность состояний сложного объекта, каждая из которых характеризуется одними и теми же или схожими характеристиками объекта. Например, если в качестве объекта наблюдения рассматривается некоторый объект управления, то ситуация объединяет такие состояния этого объекта, в которых следует применять одни и те же управляющие воздействия. Если объектом наблюдения является военная игра, то ситуация объединяет все состояния игры, которые требуют, например, мощного танкового удара при поддержке авиации.















