Комаров_942 (1231763), страница 4
Текст из файла (страница 4)
Но, как это обычно бывает, расширение потенциальных возможностей наталкивается на большие трудно
Параметр length. Данный параметр ограничивает минимально допустимую длину границ в пикселях. Как правило, короткие рёбра не очень надёжны и могут быть результатом зашумления изображений. Целесообразно ограничить минимальную длину границ, как при обучении, так и при анализе. Данный параметр может принимать значения от 0 и до бесконечности. Параметр 0 означает, что минимальная длина границ неограниченна. По умолчанию используется значение 50.
Параметр length. Данный параметр ограничивает минимально допустимую длину границ в пикселях. Как правило, короткие рёбра не очень надёжны и могут быть результатом зашумления изображений. Целесообразно ограничить минимальную длину границ, как при обучении, так и при анализе. Данный параметр может принимать значения от 0 и до бесконечности. Параметр 0 означает, что минимальная длина границ неограниченна. По умолчанию используется значение 50.
Отдельные трудности отмечались ранее при обсуждении метода k ближайших соседей, который можно было интерпретировать как усеченный вариант АВО. Его тоже можно рассматривать в параметрическом виде и свести задачу к поиску взвешенной метрики выбранного типа. В то же время уже здесь для высокоразмерных задач возникают сложные теоретические вопросы и проблемы, связанные с организацией эффективного вычислительного процесса.
Для АВО, если попытаться использовать возможности данных алгоритмов в полном объеме, указанные трудности возрастают многократно.
Отмеченные проблемы объясняют то, что на практике применение АВО для решения высокоразмерных задач сопровождается введением каких-либо эвристических ограничений и допущений. В частности, известен пример использования АВО в психодиагностике, в котором апробирована разновидность АВО, фактически эквивалентная методу k ближайших соседей.
1.2.10 Коллективы решающих правил
В завершение обзора методов распознавания образов остановимся еще на одном подходе. Это так называемые коллективы решающих правил (КРП).
Так как различные алгоритмы распознавания проявляют себя по-разному на одной и той же выборке объектов, то закономерно встает вопрос о синтетическом решающем правиле, адаптивно использующем сильные стороны этих алгоритмов. В синтетическом решающем правиле применяется двухуровневая схема распознавания. На первом уровне работают частные алгоритмы распознавания, результаты которых объединяются на втором уровне в блоке синтеза. Наиболее распространенные способы такого объединения основаны на выделении областей компетентности того или иного частног
Параметр length. Данный параметр ограничивает минимально допустимую длину границ в пикселях. Как правило, короткие рёбра не очень надёжны и могут быть результатом зашумления изображений. Целесообразно ограничить минимальную длину границ, как при обучении, так и при анализе. Данный параметр может принимать значения от 0 и до бесконечности. Параметр 0 означает, что минимальная длина границ неограниченна. По умолчанию используется значение 50.
Параметр length. Данный параметр ограничивает минимально допустимую длину границ в пикселях. Как правило, короткие рёбра не очень надёжны и могут быть результатом зашумления изображений. Целесообразно ограничить минимальную длину границ, как при обучении, так и при анализе. Данный параметр может принимать значения от 0 и до бесконечности. Параметр 0 означает, что минимальная длина границ неограниченна. По умолчанию используется значение 50.
Самый общий подход к построению блока синтеза рассматривает результирующие показатели частных алгоритмов как исходные признаки для построения нового обобщенного решающего правила. В этом случае могут использоваться все перечисленные выше методы интенсионального и экстенсионального направлений в распознавании образов. Эффективными для решения задачи создания коллектива решающих правил являются логические алгоритмы типа «Кора» и алгоритмы вычисления оценок (АВО), положенные в основу так называемого алгебраического подхода, обеспечивающего исследование и конструктивное описание алгоритмов распознавания, в рамки которого укладываются все существующие типы алгоритмов.
Для решения реальных задач из группы методов интенсионального направления практическую ценность представляют параметрические методы и методы, основанные на предложениях о виде решающих функций. Параметрические методы составляют основу традиционной методологии конструирования показателей. Применение этих методов в реальных задачах связано с наложением сильных ограничений на структуру данных, которые приводят к линейным диагностическим моделям с очень приблизительными оценками их параметров. При использовании методов, основанных на предположениях о виде решающих функций, исследователь также вынужден обращать
Параметр length. Данный параметр ограничивает минимально допустимую длину границ в пикселях. Как правило, короткие рёбра не очень надёжны и могут быть результатом зашумления изображений. Целесообразно ограничить минимальную длину границ, как при обучении, так и при анализе. Данный параметр может принимать значения от 0 и до бесконечности. Параметр 0 означает, что минимальная длина границ неограниченна. По умолчанию используется значение 50.
Свойства линейных диагностических моделей, в которых диагностический показатель представлен взвешенной суммой исходных признаков, хорошо изучены. Результаты этих моделей (при соответствующем нормировании) интерпретируются как расстояния от исследуемых объектов до некоторой гиперплоскости в пространстве признаков или, что эквивалентно, как проекции объектов на некоторую прямую линию в данном пространстве. Поэтому линейные модели адекватны только простым геометрическим конфигурациям областей пространства признаков, в которые отображаются объекты разных диагностических классов. При более сложных распределениях эти модели принципиально не могут отражать многие особенности структуры экспериментальных данных. В то же время такие особенности способны нести ценную диагностическую информацию.
Вместе с тем появление в какой-либо реальной задаче простых многомерных структур (в частности, многомерных нормальных распределений) следует скорее расценивать как исключение, чем как правило. Часто диагностические классы формируются на основе сложносоставных внешних критериев, что автоматически влечет за собой ге
Параметр length. Данный параметр ограничивает минимально допустимую длину границ в пикселях. Как правило, короткие рёбра не очень надёжны и могут быть результатом зашумления изображений. Целесообразно ограничить минимальную длину границ, как при обучении, так и при анализе. Данный параметр может принимать значения от 0 и до бесконечности. Параметр 0 означает, что минимальная длина границ неограниченна. По умолчанию используется значение 50.
Применение экстенсиональных методов не связано с каким-либо предположениями о структуре экспериментальной информации, кроме того, что внутри распознаваемых классов должны существовать одна или несколько групп чем-то похожих объектов, а объекты разных классов должны чем-то отличаться друг от друга. Очевидно, что при любой конечной размерности обучающей выборки (а другой она быть и не может) это требование выполняется всегда просто по той причине, что существуют случайные различия между объектами. В качестве мер сходства применяются различные меры близости (расстояния) объектов в пространстве признаков. Поэтому эффективное использование экстенсиональных методов распознавания образов зависит от того, насколько удачно определены указанные меры близости, а также от того, какие объекты обучающей выборки (объекты с известной классификацией) выполняют роль диагностических прецедентов. Успешное решение данных задач дает результат, приближающийся к теоретически достижимым пределам эффективности распознавания.
Достоинствам экстенсиональных методов распознавания образов противопоставлена, в первую очередь, высокая техническая сложность их практического воплощения. Для высокоразмерных пространств признаков внешне простая задача нахождения пар ближайших точек превращается в серьезную проблему. Также многие авторы отмечают в качестве проблемы необходимость запоминания достаточно большого количества объектов, представляющих распознаваемые классы.
Само по себе
Параметр length. Данный параметр ограничивает минимально допустимую длину границ в пикселях. Как правило, короткие рёбра не очень надёжны и могут быть результатом зашумления изображений. Целесообразно ограничить минимальную длину границ, как при обучении, так и при анализе. Данный параметр может принимать значения от 0 и до бесконечности. Параметр 0 означает, что минимальная длина границ неограниченна. По умолчанию используется значение 50.
Поэтому целесообразно применить модель системы распознавания, в которой проблема полного перебора объектов обучающей выборки при распознавании снимается, так как он осуществляется лишь один раз при формировании обобщенных образов классов распознавания. При самом же распознавании осуществляется сравнение идентифицируемого объекта лишь с обобщенными образами классов распознавания, количество которых фиксировано и совершенно не зависит от размерности обучающей выборки. Данный подход позволяет увеличивать размерность обучающей выборки до тех пор, пока не будет достигнуто требуемое высокое качество обобщенных образов, совершенно при этом не опасаясь, что это может привести к неприемлемому увеличению времени распознавания (так как время распознавания в данной модели вообще не зависит от размерности обучающей выборки).
Теоретические проблемы применения экстенсиональных методов распознавания связаны с проблемами поиска информативных групп признаков, нахождения оптимальных метрик для измерения сходства и различия объектов и анализа структуры экспериментальной информации. В то же время успешное решение перечисленных проблем позволяет не только конструировать эффективные распознающие алгоритмы, но и осуществлять переход от экстенсионального знания эмпирических фактов к интенсиональному знанию о закономерностях их структуры.
Переход от экстенсионального знания к интенсиональному происходит на той стадии, когда формальный алгоритм распознавания уже сконструирован и его эффективность продемонстрирована. Тогда производится изучение механизмов, за счет которых достигается полученная эффективность. Такое
Параметр length. Данный параметр ограничивает минимально допустимую длину границ в пикселях. Как правило, короткие рёбра не очень надёжны и могут быть результатом зашумления изображений. Целесообразно ограничить минимальную длину границ, как при обучении, так и при анализе. Данный параметр может принимать значения от 0 и до бесконечности. Параметр 0 означает, что минимальная длина границ неограниченна. По умолчанию используется значение 50.















