Дипломный проект (1222694), страница 2
Текст из файла (страница 2)
Рассматривается возможность изготовления из титана антенн и узлов радиолокационных установок, от которых требуется стойкость к воздействию дымовых газов и морской воды. Титан может найти применение и для производства таких деталей, как клапаны, пропеллеры, детали турбин и т. д.
Специалисты научно-исследовательского института конструкционных материалов «Прометей» при государственной поддержке Федерального агентства по науке и инновациям (Роснаука) начали в 2009 году разработку усовершенствованных технологий производства из титановых сплавов так называемых крупногабаритных полуфабрикатов (заготовок крупных узлов и деталей) для морских судов и «оффшорной техники», предназначенной для работ на шельфах.
Такие заготовки из титановых сплавов могут применяться для изготовления сверхлёгких, прочных и стойких к коррозии деталей самых разных типов судов, например, исследующих морские глубины, или связанные с добычей углеводородного сырья.
Существенный недостаток титановых сплавов только один — высокий коэффициент трения «металл по металлу», титан попросту «задирается» при трении из-за повышенной вязкости. Поэтому для деталей из титановых сплавов (в первую очередь, для различных т. н. «узлов трения») необходимо напыление специальных покрытий, придающих необходимые антифрикционные свойства. В качестве «кандидатов» на создание таких покрытий ученые намерены всесторонне исследовать различные высокопрочные материалы на основе оксидов алюминия, циркония и хрома [1].
1.1.3 Применение титана для изготовления военной техники
Металл потребляет артиллерия, где в настоящее время ведутся интенсивные исследования различных опытных образцов. Тем не менее в этой области стандартизовано производство лишь отдельных деталей и частей из титана.
Весьма ограниченное использование титана в артиллерии при большом размахе исследований объясняется его высокой стоимостью.
Были исследованы различные детали артиллерийского оборудования с точки зрения возможности замены титаном обычных материалов при условии снижения цен на титан.
Главное внимание уделялось деталям, для которых существенно снижение веса (детали, переносимые вручную и перевозимые по воздуху).
Опорная плита миномета, изготовленная из титана вместо стали. Путем такой замены и после некоторой переделки вместо стальной плиты из двух половинок общим весом 22 кг удалось создать одну деталь весом 11 кг.
Благодаря такой замене можно уменьшить число обслуживающего персонала с трех человек до двух. Рассматривается возможность применения титана11для11изготовления11орудийных11пламегасителей.
Проходят испытания изготовленные из титана орудийные станки, крестовины лафетов и цилиндры противооткатных приспособлений. Широкое применение титан может получить при производстве управляемых снарядов и ракет.
Проведенные первые исследования титана и его сплавов показали возможность изготовления из них броневых плит. Замена стальной брони (толщиной 12,7 мм) титановой броней одинаковой снарядостойкости (толщиной 16 мм) позволяет получить, по данным этих исследований, экономию в весе до 25 %. Сплавы титана повышенного качества позволяют надеяться на возможность замены стальных плит титановыми равной толщины, что дает экономию в весе до 44 %. Промышленное применение титана позволит обеспечить большую маневренность, увеличит дальность перевозки и долговечность орудия. Современный уровень развития воздушного транспорта делает очевидными преимущества легких броневиков и других машин из титана. Артиллерийское ведомство намерено снарядить в будущем пехоту касками, штыками, гранатометами и ручными огнеметами, сделанными из титана. Первое применение в артиллерии титановый сплав получил для изготовления поршня некоторых автоматических орудий.
Как отмечает менеджер по продажам американской компании Howmet Ti-Cast Боб Фаннелл, «...текущее состояние рынка можно рассматривать, как рост возможностей в новых областях, таких как вращающиеся части устройств турбонадува у грузовиков, ракеты и насосы. Одним из наших текущих проектов является развитие лёгких артиллерийских систем ВАЕ Ноwitzer ХМ777 калибром 155 мм». Ноwmet: поставит 17 из 28 узлов структурного титанового литья для каждой орудийной установки. «При общем весе орудия 9800 фунтов (приблизительно 4,44 тонн) в его конструкции на долю титана приходится около 2600 фунтов (приблизительно 1,18 тонн) - используется сплав 6А14У с большим количеством отливок», говорит Фрэнк Хёрстер, руководитель систем огневой поддержки ВАЕ 8у81ет8. Эта система [ХМ777] должна заменить находящуюся на вооружение систему М198 Ноwitzег, которая весит около 17000 фунтов (приблизительно 7,71 тонн).
Джон Барбер из Timet: указывает, что примерами военной техники, в конструкции которой используются значительные объёмы титана, являются танк "Абраме" и боевая машина "Брэдли". В течение уже двух лет выполняется совместная программа НАТО, США и Великобритании по интенсификации использования титана в системах вооружений и обороны.Как уже не раз отмечалось, титан очень подходит к использованию в автомобилестроении, правда, доля этого направления довольно скромна - примерно 1% от общего объёма потребляемого титана, или 500 тонн в год, по данным итальянской компании Роggipolini, производителя титановых узлов и деталей для «Формулы-1» и гоночных мотоциклов.
Построенная В 1969 г. АПЛ 661-го проекта в Северодвинске не имела мировых аналогов — она имела корпус полностью из титанового сплава и развивала скорость до 44,7 узла — рекорд, недостижимый даже для современных подлодок.
Титан в строительстве АПЛ применялся и в дальнейшем. Из-за повышенной глубины погружения материалом прочного корпуса подводной лодки «Комсомолец» был выбран титановый сплав 48-Т с пределом текучести около 720 МПа. Применение титана позволило существенно уменьшить массу корпуса. Она составила всего 39 % от нормального водоизмещения, что не превышало соответствующий показатель других АПЛ [1].
1.2 Ферротитан и его применение
Одним из наиболее важных направлений в современной черной металлургии является не наращивание объема производства материалов, как это было ранее, а повышение качества выпускаемой продукции при сравнительно невысоких темпах увеличения объема производства. То есть приоритетным является производство конструкционных материалов с меньшей металлоемкостью, но с высоким значением механических свойств, что достигается путем введения в сплав различных легирующих элементов. Нередко такие элементы вводятся в чистом виде, однако чаще в виде ферросплавов, представляющих собой сплавы железа с легирующими элементами. Одним из наиболее эффективных и распространенных ферросплавов является ферротитан.
Ферротитан - это легирующий сплав титана и железа, где минимальное содержание титана по массе – 20 %, а максимальное – 75 %. Ферротитан получаются путем переплава или восстановления. Стоит отметить, что сплав может иметь в своем составе алюминий, медь, кремний и некоторые примеси, но в небольших количествах. Ферротитан бывает нескольких марок, каждая из которых различна по наличию примесей: ФТи25, ФТи70С05, ФТи30, ФТи70С08, ФТи70С1, ФТи70С05Сн03, ФТи57С7 и ФТи35С8.
Ферротитан наиболее распространен в сталелитейной промышленности. Он используется для раскислений и легирования сталей. Благодаря тем свойствам, которыми сплав обладает, продукция становится очень устойчивой к коррозии, поэтому нередко ферротитан применяется для производства нержавеющей стали [2].
Кроме того, сплав применяется при выплавке наиболее ответственных конструкционных сталей с целью конечного раскисления и дегазации. Применяется ферротитани для изготовления сварочных электродов.
Ферротитан входит в группу ферросплавов, которые используются для легирования и раскисления стали. Ферротитан содержит до 35 или более 60 % титана, 1-7 % аллюминия, 1-4,5 % кремния, до 3 % меди, остальное составляет железо и его примеси.
Ферротитан используется в широком производстве для стали легирования, ее дегазации и раскисления. Стали, которые содержат ферротитан, отличаются повышенными механическими свойствами. Ферротитан связывает углерод в карбид титана. За счет этого и проявления своих свойств в жароупорных и нержавеющих сталях, улучшается свариваемость стали и ее сопротивляемость коррозии.
Ферротитан может содержать от 20 до 75 % титана. В состав сплава входит железо, за счет которого снижается температура плавления и облегчается усвоение более тугоплавкого титана.
Ферротитан – это промежуточный сплав. Он используется при производстве нержавеющей стали. При добавлении в сталь ферротитана она начинает приобретать особые свойства и становится устойчивой к коррозии. При легировании тонны стали необходим совсем небольшой расход титана около 0,5-2 %.
Получают ферротитан двумя способами. Первый - внепечной алюминотермический способ - это плавление ильменитового концентрата и титановых отходов. В этом случае получается низкопроцентный ферротитан. Второй способ - это сплавление в электрической печи железных и титановых отходов, получается высокопроцентный ферротитан.
Ферротитан — это ферросплав, основным компонентом которого является титан. Другие химические элементы — алюминий, кремний, углерод, фосфор, сера, медь, вольфрам, молибден, олово, а для марки ФТи70С08 также марганец и хром, присутствуют в ферротитане в небольших концентрациях, предельное значение которых для каждой из марок материала определяются требованиями ГОСТ 4761-91.
Согласно предусмотренному государственным стандартом сортаменту, выделяют шесть основных марок ферротитана, содержание титана в которых может изменяться в пределах от 28 до 75 %. Существует также деление на фракции в зависимости от величины частиц ферротитана. Минимальный размер — до 3,2 мм, максимальный размер — 50-200 мм. Поставка ферротитана потребителям может осуществляться в кусках, вес которых не превышает 15 килограммов.
Применяется ферротитан в металлургической промышленности в качестве присадки для дегазации и раскисления стали, в качестве легирующего элемента. Титан способен связывать углерод в карбид титана, что увеличивает коррозионную устойчивость и свариваемость сталей. Используют ферротитан и для изготовления сварочных электродов, а также в производстве жаропрочных и нержавеющих сталей. Обработанные титаном стали приобретают улучшенные механические характеристики [2].
Ферротитан – сплав титана с железом, используемый в качестве добавки при производстве стали. Екатеринбург не испытывает сегодня дефицита в поставщиках ферротитана. Чьей продукции стоит отдать предпочтение? Что необходимо учесть при выборе поставщика?
Благодаря стремительному развитию металлургического производства, современная сталелитейная промышленность выпускает всё более совершенные виды продукции. Для лучшего «усвоения полезных добавок» стальным расплавом в современной металлургии практикуется применение ферросплавов.
Назначение ферротитана
Сплав ферротитан имеет следующий состав: Титан – до 40 или более 65 %; Алюминий – 1–7 %; Кремний – 1–4,5 %; Медь – до 3 %; Железо и примеси – остальная часть.
Алюминий, кремний и медь в составе – нежелательные, но неизбежные компоненты. Сплав, содержащий 20-40 % титана, получают из ильменитового концентрата алюминотермическим способом. Алюминий здесь служит восстановителем железа и титана из оксидов обогащённой титаномагнетитовой руды. Ферротитан с содержанием Ti 65-78 % вырабатывают путём сплавления в индукционных печах титановой губки или титановых отходов со стальным ломом.
1.3 Цели использования ферротитана
Ферротитан применяется в металлургии для раскисления и легирования сталей, а также в производстве сварочных электродов и деталей с особыми требованиями к качеству.
Задействование титана в процессе производства нержавеющих и жароупорных сталей позволяет получить титановый карбид, в котором улучшающие свойства углерода проявляются наиболее полно. В результате значительно возрастает показатель свариваемости и сопротивляемости коррозии сплавов.
Титан – весьма тугоплавкий металл, поэтому добавление его в стальную ванну в чистом виде требует высоких затрат энергии и большого расхода шихтовых материалов.
Применение промежуточного сплава – ферротитана – в получении легированных сталей даёт значительные преимущества:
Сокращение времени выплавки. Снижение энергоёмкости процесса. Экономия материалов, задействованных в производстве. Повышение качества конечной продукции.
Ферротитан – сплав, состоящий из титана (20-78 %), железа и незначительного количества примесей. Сплав, содержащий 20-40 % Ti выплавляют в основном алюминотермическим процессом, восстанавливая алюминием основные составляющие сплава - титан и железо - из оксидов концентрата титаномагнетитовых руд (ильменитового концентрата). Такие сплавы содержат в соответствии с отечественными стандартами 20-40 % Ti, < 0,2 % С, 1-12 % Si, <3 % Сu, от 6 до 18-25 % AI. Медь, алюминий и кремний - нежелательные, но неизбежные примеси.















