Билет №21. 1.Волны де Бройля. Дифракция микрочастиц. Границы применимости квантовой механики. Волна де Бройля – это волна, связанная с равномерным и прямолинейным движением частицы. =Acos(t-kx) уравнения (x,t)=Aexp(-(t-kx)) волны. E=h, p=hk, =E/h, k=p/h. (x,t)=Aexp(-i/h(Et-px)) – плоская волна де Бройля. Фазовая и групповая скорости волн де Бройля. Фазовая скорость – скорость распространения фазы . Et-px=const, Edt-pdx=0, <>=dx/dt=E/p= =mc2/m - средняя скорость волны. ф=c2/, гр=d/dk, E=h, p=hk, E2-p2c2=m20c4; E=c(p2+m20c4). гр=d/dk=dE/dp= c2p/(2(p2+m20c4))=pc2/c(p2+m20c4)=pc2/mc2=p/m=m/m=. грф=c2. Дифракция микрочастиц. По идее де Бройля движение электрона или какой другой частицы связано с волновым процессом. =2h/p=2h/m (1); =E/h. Гипотеза была подтверждена экспериментально в 1927 г. исследование отражения электронов от монокристалла никеля, принадлежащего к кубической системе. Узкий пучок моноэнергетических электронов направлялся на пов-ть монокристалла. Отраженные электроны улавливались цилиндрическим электродом, присоединенным к гальванометру. Интенсивность оценивалась по силе тока. Варьировалась скорость электронов и угол . Рассеяние оказалось особенно интенсивным при угле, соответствующем отражению от атомных плоскостей, расстояние между которыми было известно из рентгенографических исследований. Вычисленная по формуле (1) длина волны примерно равна брэгговской длине волны, где 2dsin=n. Этот опыт подтвердил идею де Бройля. Томсон и Тартаковский независимо друг от друга получили дифракционную картину при прохождении электронного пучка через металлическую фольгу. Пучок электронов проходил через тонкую фольгу и попадал на фотопластину. Электрон при ударе о фотопластину на нее такое же действие как и фотон. Полученая таким же способом электрограмма золота сопоставлена с рентгенограммой алюминия. Сходство поразительно. Обнаружили, что дифф. явления и у атомных и у молекулярных пучков, и длина волны =2h/p. Таким образом было доказано, что волновое сходство присуще отдельному электрону. 2. Атом во внешнем магнитном поле. Эффект Зеемана. Эффектом Зеемана называется расщепление энергетических уровней при действии на атомы магнитного поля. Расщепление уровней приводит к расщеплению спектральных линий на несколько компонентов. Расщепление спектральных линий при действии на излучающие атомы магнитного поля так же называется эффектом Зеемана. Зеемановское расщепление уровней обьясняется тем, что атом, обладающий магнитным моментом j, приобретает в магнитном поле дополнительную энергию E=-jBB, jB- проекция магнитного момента на направление поля. jB=-Бgmj, E=Бgmj, (j=0, 1,…, J). Энергетический уровень расщепляется на подуровни, причем величина расщепления зависит от квантовых чисел L,S,J данного уровня. | Билет №22 1. Статистика Бозе-Эйнштейна. Ф-ция распределения Бозе-Эйнштейна. Свойства бозе-частиц. Бозе-частицы - частицы с нулевым или целочисленным спином, описываемые симметричными волновыми функциями и подчиняющиеся статистике Бозе-Эйнштейна. Распределение бозе-частиц по энергиям вытекает из большого канонического распределения Гиббса, при условии, что число тождественных бозе-частиц в данном квантовом состоянии может быть любым Е- энергия частицы в этом состоянии μ-химический потенциал. Для систем с переменным числом частиц (фотоны и фононы) μ=0═> 2.Радиоактивность. Закон радиоактивного распада. Виды радиоактивных излучений. Радиоактивность – способность некоторых атомов ядер самопроизвольно превращаться в другие ядра с испусканием различных видов радиоактивных излучений и элементарных частиц. Различают естественную (наблюдается у неустойчивых изотопов, сущ. в природе) и искусственную( у изотопов, полученных в термоядерных реакциях) радиоактивность. Радиоактивное излучение бывает 3 типов:α-,β- и γ-излучение. α-Излучение отклоняется электрическим и магнитным полями, обладает высокой ионизирующей и малой проникающей способностью. α-Излучение представляет собой поток ядер гелия. β-Излучение отклоняется электрическим и магнитными полями, его ионизирующая способность значительно меньше, а проникающая гораздо больше чем у α-частиц. β-Излучение представляет собой поток быстрых электронов. γ-Излучение не отклоняется электрическим и магнитным полями, обладает относительно малой ионизирующей и очень большей проникающей способностью, при прохождении через кристаллы обнаруживается дифракция. γ-Излучение представляет собой коротковолновое электромагнитное излучение с чрезвычайно малой длиной волны λ<10-10 м и вследствие этого – ярко выраженные корпускулярные свойства, т.е. является потоком частиц – γ-квантов(фотонов). Радиоактивные распад – естественное радиоактивное превращение ядер, проходящее самопроизвольно. Атомное ядро, испытывающее радиоактивный распад называется материнским, возникающее ядро – дочерним. N=N0e-λt – закон радиоактивного распада, согласно которому число нераспавшихся ядер убывает со временем по экспоненциальному закону. λ-постоянная для данного радиоактивного вещества величина, наз.постоянной радиоактивного распада. | Билет 23. 1. Волновая ф-ция, ее статический смысл и условие, которым она должна удовлетворять. Принцип суперпозиции в квантовой механике. С движением частицы связывается волновой процесс, описываемый волновой ф-цией (r,t)= =(x,y,z,t). (r,t)=(r)(t). dp=||2dV=|(r,t)|2dxdydz – вероятность того, что частица находится в объеме dV, определяемая радиусомr. Таким образом волновая ф-ция не имеет смысла, а квадрат модуля дает плотность вероятности нахождения частицы в пр-ве. Поскольку ф-ция не имеет смысла, то она может быть комплексной: ||2dV=1 (от - до ) – условие нормировки. - нормированная, если удовлетворяется условие: |ei|2=ei, e-i=1. Требования к волновой ф-ции. =||2=*, ||2dV=1. 1) Ф-ция должна быть квадратично интегрируема или конечна. 2) ф-ция должна быть однозначна. 3) непрерывность ф-ции вместе с первыми производными. Принцип суперпозиции. d=||2dV, =c11+c22. Если частица может находится в состоянии, описываемом волновой ф-цией 1 и 2, то она может находится и в состоянии , являющейся линейной комбинацией этих состояний. =c11+c22 (с1 и с2 могут быть комплексными), |c1|2 и |c2|2 дают вероятность того, что частица находится в состоянии 1 или в состоянии 2. 2. Статистика Ферми-Дирака. Функция распределения Ф-Д. Вырожденный электронный газ. Энергия Ферми. Частицы с полуцелым спином называются фермионами. Системы фермионов описываются квантовой статистикой Ф-Д. Фермионы подчиняются правилу Паули: в данном квантовом состоянии системы фермионов не может находиться более 1-й частицы. Ф-ции распределения Ф-Д называются средняя «заселенность» фермионами состояний с данной энергией: fФ=N(Wi)/gi, где N(Wi) – число частиц с энергией в интервале от Wi до Wi+Wi, gi – число квантовых состояний в этом интервале энергии. Решение задачи о наиболее вероятном распределении фермионов: fФ=1/(exp[(Wi-)/kT]+1) =(U-TS+PV)/N – химический потенциал, работа при увеличении числа частиц в системе на 1, U – внутреняя энергия системы, S – энтропия, V – объем, p – давление. Энергия Ферми – максимальная энергия у электрона находящегося на уровне Ферми при T=0К. Вырожденный электронный газ: система частиц называется вырожденной, если её св-ва, описываемые квантовыми закономерностями, отличаются от св-в обычных систем, подчиняющихся классическим законам. Параметром вырождения А называется величина: А=exp(/kT), где - химический эквивалент. Параметр вырождения показывает классический или квантовый случай газа: EF/kT>1 – квантовая, <<1 – классическая. | Билет №24. 1.Работа выхода электронов из металла. Термоэлектронная эмиссия. Формула Ричардсона и Ричардсона-Дешмана. Работа выхода – это работа, которую нужно совершить для удаления электрона с уровня Ферми. Авых=U-EF, U зависит от материала, |U|=A+Eкин, А=|U|-Eкин, ЕF – зависит от концентрации свободных электронов Aвых слабо зависит от температуры. Термоэлектронная эмиссия – испускание электронов сильно нагретой поверхностью. Термоэлектронную эмиссию характеризует величина тока насыщения. 1) U- заворачивает электрон, но некоторые электроны, кинетическая энергия которых велика прорываются, I>0. 2) Если U возрастает, то I возрастает, так как содействует росту тока. 3) Линейный участок, I~U, связана с облаком отрицательного заряда около катода. Оно мешает электрону выскакивать из катода. Рост U ведет к уменьшению плотности этого облака росту I. 4) Насыщение – все кто выскочил из катода, все увлекаются к аноду. Формула Ричардсона-Дешмана. jнас=A(kT)2exp(-Aвых/kT) идея: mx2/2>U. jнас повышается при повышении температуры и понижении работы выхода. 2.Стационарные состояния, их временная зависимость. Уравнение Шредингера для стационарных состояний. Стационарные состояния – это состояния с фиксированными значениями энергии. Это возможно, если силовое поле, в котором движется частица, стационарно, т.е. функция U=U(x,y,z) не зависит явно от времени и имеет смысл потенциальной энергии. Уравнение Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени, причем зависимость от времени выражается множителем e-iωt=e-i(E/ħ)t, так что Ψ(x,y,z,t)=ψ(x,y,z)e-i(E/ħ)t, где Е- полная энергия частицы, постоянная в случае стационарного поля. Подставляя это выражение в уравнение Шредингера( –ħ2/2m-ΔΨ+U(x,y,z,t)Ψ=iħ(∂Ψ/∂t), где ħ=h/(2π), m –масса частицы, i-мнимая единица, U-потенциальная функция частицы в силовом поле, в котором она движется Δ-оператор Лапласа(ΔΨ=∂2Ψ/∂x2+∂2Ψ/∂y2+∂2Ψ/∂z2),Ψ(x,y,z,t)-искомая волновая функция частицы) получим: разделив на общий множитель e-i(E/ħ)t и преобразовав придем к уравнению, определяющему функцию ψ Δψ+(2m/ħ2)(E-U)ψ=0-уравнение Шредингера для стационарных состояний. Это уравнение имеет бесчисленное количество решений, из которых посредством наложения граничных условий отбираются решения, имеющие физич.смысл. Условия: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Т.о. реальный физич.смысл имеют только такие решения, которые выражаются регулярными функциями ψ . |