Главная » Просмотр файлов » Вопрос 3. Логика 1-го порядка. Выполнимость и общезначимость. Общая схема метода резолюций.

Вопрос 3. Логика 1-го порядка. Выполнимость и общезначимость. Общая схема метода резолюций. (1161605), страница 2

Файл №1161605 Вопрос 3. Логика 1-го порядка. Выполнимость и общезначимость. Общая схема метода резолюций. (Ответы по математической логике и логическому программированию) 2 страницаВопрос 3. Логика 1-го порядка. Выполнимость и общезначимость. Общая схема метода резолюций. (1161605) страница 22019-09-19СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Сведение проблемы общезначимости к проблемепротиворечивости.ϕϕ0 = ¬ϕϕ общезначима ⇐⇒ ϕ0 противоречива.Этап 2. Построение предваренной нормальной формы (ПНФ).ϕ0ϕ1 = Q1 x1 Q2 x2 . . . Qn xn (D1 &D2 & . . . &DN )ϕ0 равносильна ϕ1 , т. е. I |= ϕ0 ⇔ I |= ϕ1 .ОБЩАЯ СХЕМА МЕТОДА РЕЗОЛЮЦИЙЭтап 3. Построение сколемовской стандартной формы (ССФ).ϕ1ϕ2 = ∀xi1 ∀xi2 . . . ∀xik (D1 &D2 & .

. . &DN )ϕ1 противоречива ⇐⇒ ϕ2 противоречива.Этап 4. Построение системы дизъюнктов.ϕ2Sϕ = {D1 , D2 , . . . , DN },где Di = Li1 ∨ Li2 ∨ · · · ∨ Limi .ϕ2 противоречива ⇐⇒ система дизъюнктов Sϕ противоречива.ОБЩАЯ СХЕМА МЕТОДА РЕЗОЛЮЦИЙЭтап 5. Резолютивный вывод тождественно ложного(противоречивого) дизъюнкта из системы Sϕ .Правило резолюции Res :D1 = D10 ∨ L, D2 = D20 ∨ ¬L.D0 = D10 ∨ D20Дизъюнкт D0 называется резольвентой дизъюнктов D1 и D2 .Резольвенты строят, пока не будет получен пустой дизъюнкт .Это возможно в случае D1 = L, D2 = ¬L:D1 = L, D2 = ¬LD0 = Система дизъюнктов Sϕ противоречива ⇔ из Sϕ резолютивновыводим пустой дизъюнкт .ИТОГ.

Формула ϕ общезначима ⇔ из системы дизъюнктов Sϕрезолютивно выводим пустой дизъюнкт .ОБЩАЯ СХЕМА МЕТОДА РЕЗОЛЮЦИЙИсходнаяформулаϕ-Отрицание¬ϕ?ССФϕ2?СистемадизъюнктовSϕПНФϕ1Резолютивный вывод- пустого дизъюнкта из системы SϕРАВНОСИЛЬНЫЕ ФОРМУЛЫВведем вспомогательную логическую связку эквиваленции ≡.Выражение ϕ ≡ ψ — это сокращенная запись формулы(ϕ → ψ)&(ψ → ϕ).ОпределениеФормулы ϕ и ψ будем называть равносильными , еслиформула ϕ ≡ ψ общезначима, т.

е. |= (ϕ → ψ)&(ψ → ϕ).Запись ϕ[ψ] означает, что формула ϕ содержит подформулу ψ.Запись ϕ[ψ/χ] обозначает формулу, которая образуется изформулы ϕ заменой некоторых (не обязательно всех)вхождений подформулы ψ на формулу χ.Теорема|= ψ ≡ χ=⇒ |= ϕ[ψ] ≡ ϕ[ψ/χ]ПРЕДВАРЕННЫЕ НОРМАЛЬНЫЕ ФОРМЫЗамкнутая формула ϕ называется предваренной нормальнойформой (ПНФ) , еслиϕ = Q1 x1 Q2 x2 .

. . Qn xn M(x1 , x2 , . . . , xn ),гдеIQ1 x1 Q2 x2 . . . Qn xn — кванторная приставка , соcтоящаяиз кванторов Q1 , Q2 , . . . , Qn ,IM(x1 , x2 , . . . , xn ) — матрица — бескванторнаяконъюнктивная нормальная форма (КНФ), т. е.M(x1 , x2 , . . . , xn ) = D1 & D2 & . . .

& DN ,где Di = Li1 ∨ Li2 ∨ · · · ∨ Liki — дизъюнкты , состоящие излитер Lij = Aij или Lij = ¬Aij , где Aij — атомарнаяформула.Теорема о ПНФДля любой замкнутой формулы ϕ существуетравносильная предваренная нормальная форма ψ.СКОЛЕМОВСКИЕ СТАНДАРТНЫЕ ФОРМЫПредваренная нормальная форма видаϕ = ∀xi1 ∀xi2 .

. . ∀xim M(xi1 , xi2 , . . . , xim ),в которой кванторная приставка не содержит кванторов ∃,называется сколемовской стандартной формой (ССФ) .Теорема о ССФДля любой замкнутой формулы ϕ существует такаясколемовская стандартная форма ψ, чтоϕ выполнима⇐⇒ψ выполнима.СИСТЕМЫ ДИЗЪЮНКТОВУтверждение|= ∀x (ϕ & ψ) ≡ ∀x ϕ & ∀xψИначе говоря, кванторы ∀ можно равномерно распределить посомножителям (дизъюнктам) КНФ.ТеоремаСколемовская стандартная формаϕ = ∀x1 ∀x2 .

. . ∀xm (D1 & D2 & . . . & DN )невыполнима тогда и только тогда, когда множество формулSϕ = {∀x1 ∀x2 . . . ∀xm D1 , ∀x1 ∀x2 . . . ∀xm D2 , . . . , ∀x1 ∀x2 . . . ∀xm DN }не имеет модели.СИСТЕМЫ ДИЗЪЮНКТОВКаждая формула множества Sϕ имеет вид∀x1 ∀x2 . . . ∀xm (L1 ∨ L2 ∨ · · · ∨ Lk )и называется дизъюнктом .В дальнейшем (по умолчанию) будем полагать, что всепеременные дизъюнкта связаны кванторами ∀, и кванторнуюприставку выписывать не будем.Каждый дизъюнкт состоит из литер L1 , L2 , . .

. , Lk . Литера —это либо атом, либо отрицание атома.Особо выделен дизъюнкт, в котором нет ни одной литеры.Такой дизъюнкт называется пустым дизъюнктом иобозначается . Пустой дизъюнкт тождественно ложен.СИСТЕМЫ ДИЗЪЮНКТОВСистему дизъюнктов, не имеющую моделей, будем называтьневыполнимой , или противоречивой системой дизъюнктов.Задача проверки общезначимости формул логики предикатов.|= ϕ ?ϕ общезначима ⇐⇒ ϕ0 = ¬ϕ невыполнима.ϕ0 невыполнима ⇐⇒ ПНФ ϕ1 невыполнима.ϕ1 невыполнима ⇐⇒ ССФ ϕ2 невыполнима.ϕ2 невыполнима ⇐⇒ система дизъюнктов Sϕ невыполнима.Итак, проверка общезначимости |= ϕ ? сводится к проверкепротиворечивости системы дизъюнктов Sϕ .РЕЗОЛЮТИВНЫЙ ВЫВОДО терминологии.Пусть задано выражение E и подстановка θ.Подстановка θ : Var → Var называется переименованием ,если θ — биекция.Если θ — переименование, то пример E θ называется вариантомвыражения E .Подстановка θ называется унификатором выражений E1 и E2 ,если E1 θ = E2 θ.Подстановка θ называется наиболее общим унификатором(НОУ) выражений E1 и E2 , если1.

θ — унификатор выражений E1 и E2 ;2. для любого унификатора η выражений E1 и E2 существуеттакая подстановка ρ, для которой верно равенствоη = θρРЕЗОЛЮТИВНЫЙ ВЫВОДПравило резолюции.Пусть D1 = D10 ∨ L1 и D2 = D20 ∨ ¬L2 — два дизъюнкта.Пусть θ ∈ НОУ(L1 , L2 ).Тогда дизъюнкт D0 = (D10 ∨ D20 )θ называется резольвентойдизъюнктов D1 и D2 .Пара литер L1 и ¬L2 называется контрарной парой .Правило резолюцииD10 ∨ L1 , D20 ∨ ¬L2,(D10 ∨ D20 )θθ ∈ НОУ(L1 , L2 )РЕЗОЛЮТИВНЫЙ ВЫВОДПравило склейки.Пусть D1 = D10 ∨ L1 ∨ L2 — дизъюнкт.Пусть η ∈ НОУ(L1 , L2 ).Тогда дизъюнкт D0 = (D10 ∨ L1 )η называется склейкойдизъюнкта D1 .Пара литер L1 и L2 называется склеиваемой парой .Правило склейкиD10 ∨ L1 ∨ L2,(D10 ∨ L1 )ηη ∈ НОУ(L1 , L2 )РЕЗОЛЮТИВНЫЙ ВЫВОДОпределение резолютивного вывода.Пусть S = {D1 , D2 , .

. . , DN } — система дизъюнктов.Резолютивным выводом из системы дизъюнктов S называетсяконечная последовательность дизъюнктов0D10 , D20 , . . . , Di0 , Di+1, . . . , Dn0 ,в которой для любого i, 1 ≤ i ≤ n, выполняется одно из трехусловий:1. либо Di0 — вариант некоторого дизъюнкта из S;2. либо Di0 — резольвента дизъюнктов Dj0 и Dk0 , где j, k < i;3. либо Di0 — склейка дизъюнкта Dj0 , где j < i.Дизъюнкты D10 , D20 , . .

. , Dn0 считаются резолютивновыводимыми из системы S.РЕЗОЛЮТИВНЫЙ ВЫВОДРезолютивный вывод называется успешным (или, по другому,резолютивным опровержением ), если этот вывод оканчиваетсяпустым дизъюнктом .Успешный вывод — это свидетельство того, что системадизъюнктов S противоречива и опровергнуто предположениео ее выполнимости!Теорема корректности резолютивного выводаЕсли из системы дизъюнктов S резолютивно выводим пустойдизъюнкт , то S — противоречивая система дизъюнктов.Теорема о полноте резолютивного выводаЕсли S — противоречивая система дизъюнктов, то из Sрезолютивно выводим пустой дизъюнкт .ПРИМЕНЕНИЕ МЕТОДА РЕЗОЛЮЦИЙПример.Рассмотрим формулу ϕ∀x∀y ∃v ∀u(A(u, v ) → B(y , u))&(¬∃wA(w , u) → ∀zA(z, v ))→ ∃yB(x, y )ЗадачаПроверить, верно ли, что |= ϕ.РешениеМетодом резолюций.ПРИМЕНЕНИЕ МЕТОДА РЕЗОЛЮЦИЙРешениеЭтап 1.

Покажем, что формула ϕ1 = ¬ϕ противоречивая.ϕ1 = ¬∀x∀y ∃v ∀u(A(u, v ) → B(y , u)) &(¬∃wA(w , u) → ∀zA(z, v ))→ ∃yB(x, y )ПРИМЕНЕНИЕ МЕТОДА РЕЗОЛЮЦИЙРешениеЭтап 2. Приведем ϕ1 к ПНФ ϕ2 .Исходная формула¬∀x∀y ∃v ∀u(A(u, v ) → B(y , u)) &(¬∃wA(w , u) → ∀zA(z, v ))→ ∃yB(x, y )ПРИМЕНЕНИЕ МЕТОДА РЕЗОЛЮЦИЙРешениеЭтап 2. Приведем ϕ1 к ПНФ ϕ2 .Переименование переменных¬∀x∀y 0 ∃v ∀u(A(u, v ) → B(y 0 , u)) &(¬∃wA(w , u) → ∀zA(z, v ))→ ∃y 00 B(x, y 00 )ПРИМЕНЕНИЕ МЕТОДА РЕЗОЛЮЦИЙРешениеЭтап 2. Приведем ϕ1 к ПНФ ϕ2 .Удаление импликаций¬∀x¬∀y 0 ∃v ∀u(¬A(u, v ) ∨ B(y 0 , u)) &(¬¬∃wA(w , u) ∨ ∀zA(z, v ))∨ ∃y 00 B(x, y 00 )ПРИМЕНЕНИЕ МЕТОДА РЕЗОЛЮЦИЙРешениеЭтап 2.

Приведем ϕ1 к ПНФ ϕ2 .Продвижение отрицаний∃x∀y 0 ∃v ∀u(¬A(u, v ) ∨ B(y 0 , u)) &(∃wA(w , u) ∨ ∀zA(z, v ))& ∀y 00 ¬B(x, y 00 )ПРИМЕНЕНИЕ МЕТОДА РЕЗОЛЮЦИЙРешениеЭтап 2. Приведем ϕ1 к ПНФ ϕ2 .Вынесение кванторовϕ2 =∃x∀y 0 ∃v ∀u∃w ∀z∀y 00(¬A(u, v ) ∨ B(y 0 , u)) &(A(w , u) ∨ A(z, v )) &¬B(x, y 00 )ПРИМЕНЕНИЕ МЕТОДА РЕЗОЛЮЦИЙРешениеЭтап 3. Приведем ϕ2 к ССФ ϕ3 .ϕ3 =∀y 0∀u∀z∀y 00(¬A(u, f (y 0 )) ∨ B(y 0 , u)) &(A(g (y 0 , u), u) ∨ A(z, f (y 0 ))) & ¬B(c, y 00 )ПРИМЕНЕНИЕ МЕТОДА РЕЗОЛЮЦИЙРешениеЭтап 4. Формирование системы дизъюнктов Sϕ .Sϕ =nD1 = ¬A(u, f (y 0 )) ∨ B(y 0 , u),D2 = A(g (y 0 , u), u) ∨ A(z, f (y 0 )), oD3 = ¬B(c, y 00 )ПРИМЕНЕНИЕ МЕТОДА РЕЗОЛЮЦИЙРешениеЭтап 5. Резолютивный вывод из Sϕ .Sϕ =nD1 = ¬A(u, f (y 0 )) ∨ B(y 0 , u),D2 = A(g (y 0 , u), u) ∨ A(z, f (y 0 )), oD3 = ¬B(c, y 00 )1.

D10 = ¬A(u1 , f (y10 )) ∨ B(y10 , u1 ), (вариант D1 )2. D20 = A(g (y20 , u2 ), u2 ) ∨ A(z2 , f (y20 )), (вариант D2 )3. D30 = A(g (y30 , f (y30 )), f (y30 )), (склейка D20 )4. D40 = B(y40 , g (y40 , f (y40 ))), (резольвента D10 и D30 )5. D50 = ¬B(c, y500 ), (вариант D3 )6. D60 = . (резольвента D40 и D50 )ПРИМЕНЕНИЕ МЕТОДА РЕЗОЛЮЦИЙРешениеЗаключение. Успешный резолютивный вывод из Sϕ означает,что Sϕ — противоречивая система дизъюнктов.Значит, ϕ1 = ¬ϕ — невыполнимая формула.Значит, ϕ — общезначимая формула,|= ϕ.КОНЕЦ ОТВЕТА НА БИЛЕТ 1..

Характеристики

Список файлов ответов (шпаргалок)

Ответы по математической логике и логическому программированию
Вопрос 4. Логическое программирование. Декларативная семантика и операционная семантика; соотношение между ними. Стандартная стратегия выполнения логических программ..pdf
Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее