Часть 2 (1159681), страница 4

Файл №1159681 Часть 2 (И.А. Семиохин - Сборник задач по химической термодинамике (2007)) 4 страницаЧасть 2 (1159681) страница 42019-09-19СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

При значениях Кр « 1 можно пренебречь величинами рi(xi) посравнению с 1 в уравнениях n–й степени (n > 2).Задача 3. Для реакции: Н2 + I2(г) = 2НI при 298 К: Kp= 650. Равновесноедавление pI 2( г ) над I2(т) при 298 К равно 0,33 мм рт. ст.Определить Kp гетерогенной реакции: Н2 + I2(т) = 2НI при 400 К, еслиΔrHoT этой реакции в интервале температур 298 ÷ 400 К считать постоянной иравной 26,6 кДж⋅моль-1.Вариант 7.Задача 1. Определить направление процесса в системе: С2Н6 = С2Н2 + 2Н2,если исходная смесь содержит 3 моля этана, 2 моля водорода и 1 мольацетилена.

Общее давление в системе равно 10 атм, а константа равновесия Kpравна 5,6.Задача 2. При температуре 900 К и давлении 304 мм рт. ст. константаравновесия реакции: СН4 + NH3 = НСN + 3Н2: Kp = 4,3⋅10−3.Вычислить состав равновесной смеси, если исходные вещества взяты встехиометрических соотношениях и подчиняются законам идеальных газов.Примечание. При значениях Кр << 1 можно пренебречь pi(xi) посравнению с 1 в уравнениях n–й степени (n > 2).Задача 3. Рассчитать ΔUoT, ΔHoT, ΔSoT, ΔAoT и ΔGoT для процессаиспарения 5 л жидкого гексана при 95°С, если плотность гексана равна0,59 г⋅см-3, а удельная теплота парообразования равна 306,27 Дж⋅г-1.26При расчетах учтем, что 1 л⋅атм = 101,33 Дж.Вариант 8.Задача 1. Смесь из 90 мольных % СН4 и 10 мольных % Н2 реагирует пореакции: Сгр +2Н2 = СН4 при Т= 900 К и р = 1,2 атм.Определите равновесный состав газовой смеси, если ΔfGoT метана равно8493,5 Дж⋅моль-1 при 900 К.Задача 2. Металлический титан при 1600 К находится в атмосфереводорода (Н2), содержащего следы влаги.Найти максимально допустимый процент содержания Н2О в Н2, прикотором не будет происходить окисления титана, если при этой температуредля оксида титана: ΔfGoT = −395,81 кДж⋅моль-1 и для водяного параΔfGoT = −158,57 кДж⋅моль-1.Задача 3.

Рассчитать ΔUoT, ΔHoT, ΔSoT, ΔAoT и ΔGoT для процессаиспарения 1 моля бензола при нормальной температуре кипения, еслидавление пара над жидким бензолом описывается уравнением:lgp (мм рт. ст.) = 6,8975 -1206,35220,2 + t oC.Вариант 9.Задача 1. Смесь из 20 мольных % CO2 и 80 мольных % H2 реагирует пореакции: СО2 + Н2 = СО + Н2О(г) при Т = 1300 К и р = 1,2 атм.Определите равновесный состав смеси в мольных процентах, используяследующие данные:СО2Н2СОН2О(г)ΔfHo298, кДж⋅моль-1−393,142−−113,812−238,913Фо1300 Дж⋅моль-1⋅К-1238,038144,649212,140206,377ВеществоЗадача 2.

Образование сажи в потоке топочного газа идет по реакции:272 СО = СО2 + С(т). Оцените температуру, при которой в системе при р = 1 атмпоявится сажа, используя следующие данные:ΔfHo298,кДж⋅моль-1So298,Дж⋅моль-1⋅К-1С(т)−СОСO2Вещество5,740НоТ – Но298,кДж⋅моль-111,80SoT - So298,Дж⋅моль-1⋅К-118,744−110,53197,54821,6936,903−393,52213,67433,4155,522Будет ли выделяться сажа выше или ниже этой температуры?Задача 3.

В интервале температур 1100 ÷ 1200 К энтальпия испарениянатрия равна 97,91 кДж⋅моль-1, давление паров натрия при 827°С равно453,7 мм рт. ст.Определить давление паров натрия при 927 °С и его нормальнуютемпературу кипения. Результат сопоставьте с температурой кипения,найденной из зависимости lgp (атм) = 4,520 -5220.TВариант 10.Задача 1.

Найти степень превращения СО2 при Т = 298 К и р = 2 атм дляреакции: СО2 +Н2 = СО + Н2О(г), если исходная смесь состояла из 20мольных % Н2, 20 мольных % СО2, 10 мольных % СО и 50 мольных % N2.Расчет провести, исходя из следующих данных:СО2Н2СОН2О(г)ΔfHo298, кДж⋅моль-1−393,52−−110,53−241,83So298, Дж⋅моль-1⋅К-1213,674130,570197,548188,724Вещество28Задача 2.

Рассчитать константу равновесия реакции:NaF(г) + AlF3(г) = NaAlF4(г)при Т = 1000 К и р = 1 атм, если известны следующие данныеВеществоNaF(г)AlF3(г)NaAlF4(г)ΔfHo298, кДж⋅моль-1−293,51−1206,22−1850,00Фо1000, Дж⋅моль-1⋅К-1226,529298,321379,726Задача 3. Удельная теплота испарения диэтилового эфира равна369,82 Дж⋅г-1 в его нормальной точке кипения (34,5°С).Подсчитать: а) давление пара при 36°С; б) изменение давления пара стемпературой (dp)T .dT кипЧему равна температура кипения эфира при 750 мм рт. ст. Пар считатьидеальным газом.29Глава VII. Статистическая термодинамика.§ 1.Микроканонический ансамбль Гиббса.Это совокупность изолированных систем, каждая из которыххарактеризуется следующими постоянными значениями:N = const, V = const, H = const.Вероятность значений энергии ± ΔЕ есть: dW(E) = ρdГ(Е).(1)(2)Плотность распределения вероятности ρ равна:ρ=dW ( E );dΓ ( E )ρ={сonst = ρ 0 при E ≤ H ≤ E + ΔE,0 при Н < E; H > E + ΔE(2а)где Г(Е) –объём N молекул с энергией Е в Г – пространстве 2F измерений(F = ΣNifi) или (F = Nf) – для одинаковых частиц.

Для каждой из частицимеется 2f переменных: q1, q2,…qf координат и р1, р2,…рf импульсов.Для одной частицы существует 2f – мерное μ – пространство. Для Nчастиц элемент объема Г – пространства равен:dΓ(E) = dq1dq2…dqFdp1dp2…dpF = dΓVdΓp.(3)ΓV = VN,(3a)В подпространстве координатв подпространстве импульсов частицы с энергией, меньшей или равнойЕ = Р2/2m, лежат внутри сферы радиуса Р = √2mE.Oбъём сферы 3N – мерного пространства с радиусом Р равен:2π eP 2 3 N / 2 4π me 3N/2 3N/2)=() E ,Гр(Е) = (3N3Nа общий фазовый объем Г – пространства равен:4π me 3N/2 3N/2Г(Е) = ГV⋅Γp(E) = VN⋅() E3NУсловие нормировки вероятности: ∫dW(E) = ρ(4)(5)E + dE∫ dΓ( E ) = 1,(6)Eоткудаρ=1.ΔΓ( E )(7)Энтропия S определяется уравнением Больцмана – Планка:S = klnW.30(8)Здесь W есть число квантовых состояний ΔΩ, отвечающих фазовому объёмуΔГ, а k – постоянная Больцмана: k = 1,38·10-23 Дж⋅К-1.ΔГ = (dpdq)F ≥ hF,Cогласно принципу Гейзенберга:(9)где h – постоянная Планка: h = 6,6261·10-34 Дж·с.С учетом уравнения (9) и неразличимости частиц получим:W = ΔΩ =ΔΓFh N!1= ~ρ(10)При равновесии: W = Wmax, поэтому параметром микроканоническогораспределения будет энтропия: S = klnΔΩ = - kln ρ~ ( E ) ,(11)гдеρ~ = ρN!hF ,(12)есть нормированная плотность распределения вероятности.§2.

Канонический ансамбль Гиббса.Это ансамбль систем, имеющих постоянными следующие величины:N = const, V = const, T = const.(13)Системы этого ансамбля (1) помещены в большой термостат (2), когда длявсей системы:H(p,q) = H(p1,q1) + H(p2,q2).Для квазинезависимых систем: ρ~ ( H ) = ρ~ 1( H1 ) ρ~ 2( H 2 ) .1∂ ln ρ~= const = - , (θ > 0).∂HθКаноническое распределение имеет вид:При равновесии:ρ~ = Вexp[ - H(p,q)/θ].BИз соотношений (12) и (16) получим: ρ =N !h Fexp[ - H(p,q)/θ].(13а)(14)(15)(16)(17)Вероятность нахождения параметров системы в пределах ± dq, ±dp равна:dW(p,q) = ρdpdq =BN !h Fexp[ - H(p,q)/θ]dpdq.(18)Учитывая условие нормировки: ∫ L∫ dW ( p, q ) = 1, получим выражение:p31q11=BN!h F∫ L ∫ exp [ - H(p,q)/θ]dpdq = Z,(19)2Fкоторое называется статистическим интегралом.Обозначим В = еА/θ, тогда Z = e-A/θ, откуда: A = - θlnZ(20)ρ~ = Be-H/θ = e(A-H)/θ ≈ е( А− Е ) /θ ,Поскольку(21)то с учетом соотношения (15) получим: θ = kT.(22)Множитель θ = kT является модулем канонического распределения.A −UA−E== ln ρ~ ,kTkTгде U = E - среднее каноническое значение энергии системы.Из соотношения (21) имеем:ln ρ~ = -Из (11) получаем:В итоге:S=(21а)Sk(11a)U −Aи A = U – TS.T(23)С учетом соотношения (20) получаем связь энергии Гельмгольца сoстатистическим интегралом:A = - kT lnZ.(24)§3.

Идеальный одноатомный газ.Дляидеальногоодноатомногогазастатистическийинтеграл,относящийся только к поступательным степеням свободы рассчитывается поформуле:Z=1N !h3N∞{ ∫ ∫ exp ( −∞p x2 + p 2y + p z22mkTУчитывая, что 1-й тройной интеграл, равенlx l y lz)dpxdpydpz ∫N∫ ∫ dxdydz }(25)000πα( )3 , где α =1, а 2-й2mkTтройной интеграл равен общему объёму V, получаем:N1 2π mkT 3 / 2 N Qпост{() V} =Z=N!N!h232(26)Здесь Qпост – молекулярная сумма по состояниям для поступательногодвижения, равная:Qпост = (2πmkTh2)3/2V.(27)С учетом внутренних степеней свободы статистический интегралмногоатомного идеального газа запишется в виде:(QпостQвнутр ) N(QпостQврQколQэл ) NQN==.Z=N!N!N!(28)По формуле Стирлинга для больших чисел (в наших расчетахN =NA = 6,02⋅1023) получим:поэтому:Z=(N! = (N N) ,eQe NQe) = ( пост )N(Qвн)NNN(29)В общем виде молекулярная сумма по состояниям для различных видовдвижения есть:Qi =∑ gi e−ε i / kT(30)iгде εi – энергия i-го состояния, а gi – cтатистический вес (или вырожденность)этого состояния.Так, например, электронная сумма по состояниям имеет вид:Qэл =∑ gi e−ε эл / kT= g0 + g1e −ε 1/ kT + g2 e −ε 2 / kT + …,(31)причем для большинства молекул Qэл = g0, где g0 – вырожденность основногоэлектронного состояния.§ 4.Термодинамические функции одного моля идеального газа.a).A - Е0 = - kTlnZ = - RTln(Qпосте) - RTlnQвн,N(32)где E0 = NAε0 – нулевая энергия 1 моля веществ.b).

G – Е0 = A – Е0 + pV = A – E0 + RT = - RTln(c).S=-(Qпост) - RTlnQвнNQе∂A∂ ln Q)V,N .)V,N = Rln( пост ) + RlnQвн + RT(∂TN∂T33(33)(34)Здесь и далее, если не оговорено особо, Q = Qпост·Qвн, a N = NA.d).p=-(U – Е0 = A – E0 + TS = RT2(e).f).∂А∂ ln Q)T,N.)T,N = - RT(∂V∂VH – Е0 = U – E0 + RT = RT2(Ф=-g).µ=(h).СV = (i).∂ ln Q)V,N.∂T∂ ln Q∂ ln Q)V,N + RT = RT2()p,N.∂T∂TQG − E0= Rln( пост ) + RlnQвн.NTQе∂A)V,T = - kTln( пост ) – kTlnQвн.∂NN∂U∂ ln Q∂ 2 ln Q)V,N + T()V,N = RT{2() V,N}∂T∂T∂T 2(35)(36)(37)(38)(39)(40)§ 5.Поступательные составляющие термодинамических функцийидеального газа.Размерность поступательных (да и других ) составляющихтермодинамических функций зависит от размерности универсальной газовойпостоянной R, которая выражается в Дж⋅моль-1⋅К-1, масса 1 моля (М) дается вграммах.а).

Qпост = (2π mkTh2)3/ 2b).V=(2π MkTNh 2Zпост = (c). A – E0 = - RT ln ()3/ 21NkT22 5/2 3/2= 1,541⋅10 T M p .pQпосте N) .NG – E0 = - RT ln ((43)3Q5) = - RT ln M - RT ln T + RT lnp (атм) +N22+ 30,473Т (Дж⋅моль-1).*)e). Ф=(42)Qпосте35) = - RT ln M - RT ln T + RT ln p (атм) +N22+ 22,159Т (Дж⋅моль-1).d).(41)35R ln M + R ln T – R ln p (атм) – 30,473 (Дж⋅моль-1K-1).2234(44)(45)f).H – E0 =g). S =5RT = 20,785T (Дж⋅моль-1).2(46)35H −GH − E0=Ф+= R ln M + R ln T – R ln p (атм) TT22- 9,688 (Дж⋅моль-1К-1)**).(47)Расчет энтропии как производной энергии Гельмгольца:g´).S=-(Qe∂А∂ ln Q)V,N)V,N = - R ln () +RT (∂ТN∂T(48)дает аналогичное (47) выражение для энтропии идеального газа, называемоеуравнением Закура – Тетроде:S=U – E0 =h).*)35R ln M + R ln T – Rln p – 9,688 (Дж⋅моль-1⋅K-1).223RT = 12,471Т (Дж⋅моль-1).2(48а)(49)i).СV = (∂U)V,N = 12,471 (Дж⋅моль-1⋅К-1).∂T(50)j).Cp = (∂H)p,N = 20,785 (Дж⋅моль-1⋅К-1).∂T(51)RT ln e = RT = 8,314 T (Дж⋅моль-1).**)– 30,473 +5R = - 9,688 (Дж⋅моль-1⋅К-1).2§ 6.Электронные составляющие термодинамических функцийидеального газа.а).

Характеристики

Тип файла
PDF-файл
Размер
764,41 Kb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее