Главная » Просмотр файлов » Расширенный сборник задач для самостоятельного решения

Расширенный сборник задач для самостоятельного решения (1157992), страница 6

Файл №1157992 Расширенный сборник задач для самостоятельного решения (Расширенный сборник задач для самостоятельного решения) 6 страницаРасширенный сборник задач для самостоятельного решения (1157992) страница 62019-09-18СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

Äåêëàðàòèâíàÿ è îïåðàöèîííàÿ ñåìàíòèêè.27Äëÿ îáîçíà÷åíèÿ òîãî ôàêòà, ÷òî ýðáðàíîâñêàÿ èíòåðïðåòàöèÿ I ÿâëÿåòñÿ ìîäåëüþ äëÿ ïðîãðàììû P áóäåò èñïîëüçîâàòüñÿ ñîêðàùåííàÿ çàïèñü I |= P .Äîêàæèòå, ÷òî H -èíòåðïðåòàöèÿ I ÿâëÿåòñÿ ìîäåëüþ äëÿ õîðíîâñêîéëîãè÷åñêîé ïðîãðàììû P òîãäà è òîëüêî òîãäà, êîãäà äëÿ ëþáîãî îñíîâíîãî ïðèìåðà ïðîãðàììíîãî óòâåðæäåíèÿ D0 = A00 ← A01 , . . . , A0n , D0 ∈ [P] âåðíîÓïðàæíåíèå 1.98.{A01 , . .

. , A0n } ⊆ I ⇒ A00 ∈ I.Äîêàæèòå, ÷òî êàæäàÿ õîðíîâñêàÿ ëîãè÷åñêàÿ ïðîãðàììà P èìååò õîòÿáû îäíó ýðáðàíîâñêóþ ìîäåëü.Äîêàæèòå, ÷òî H -èíòåðïðåòàöèÿ BH ÿâëÿåòñÿ ìîäåëüþ äëÿ ëþáîéõîðíîâñêîé ëîãè÷åñêîé ïðîãðàììû P . Ïðèâåäèòå ïðèìåð ïðîãðàììû, ìîäåëüþ êîòîðîé ÿâëÿåòñÿ èíòåðïðåòàöèÿ I = ∅. Êàê äîëæíà áûòü óñòðîåíà ïðîãðàììà P äëÿ òîãî, ÷òîáû èíòåðïðåòàöèÿ I = ∅ áûëà åå ìîäåëüþ?Äîêàæèòå, ÷òî åñëè H -èíòåðïðåòàöèè I1 è I2 ÿâëÿþòñÿ ìîäåëÿìèäëÿ õîðíîâñêîé ëîãè÷åñêîé ïðîãðàììû P , òî H -èíòåðïðåòàöèÿ I0 = I1 ∩ I2 òàêæå ÿâëÿåòñÿìîäåëüþ äëÿ P .Ðàññìîòðèì ìíîæåñòâî IP âñåõ ýðáðàíîâñêèõ ìîäåëåé äëÿ ëîãè÷åñêîé ïðîãðàììû P . Äîêàæèòå, ÷òî H -èíòåðïðåòàöèÿ MP = T I ÿâëÿåòñÿ íàèìåíüøåé (ïîI∈Iîòíîøåíèþ òåîðåòèêî-ìíîæåñòâåííîãî âêëþ÷åíèÿ) ìîäåëüþ äëÿ ïðîãðàììû P .Ðàññìîòðèì ìíîæåñòâî IP âñåõ ýðáðàíîâñêèõ ìîäåëåé äëÿ îãè÷åñêîéïðîãðàììû P . Äîêàæèòå, ÷òî H -èíòåðïðåòàöèÿ MP = T I ÿâëÿåòñÿ íàèìåíüøåé (ïî îòíîI∈Iøåíèþ òåîðåòèêî-ìíîæåñòâåííîãî âêëþ÷åíèÿ) ìîäåëüþ äëÿ ïðîãðàììû P .Äîêàæèòå, ÷òî MP = ∅ òîãäà è òîëüêî òîãäà, êîãäà õîðíîâñêàÿ ëîãè÷åñêàÿ ïðîãðàììà P íå ñîäåðæèò íè îäíîãî ôàêòà.Äîêàæèòå, ÷òî äëÿ ëþáîãî îñíîâíîãî àòîìà A0 è äëÿ ëþáîé õîðíîâñêîé ëîãè÷åñêîé ïðîãðàììû P ñïðàâåäëèâî ñëåäóþùåå ñîîòíîøåíèå:Óïðàæíåíèå 1.99.Óïðàæíåíèå 1.100.Óïðàæíåíèå 1.101.Óïðàæíåíèå 1.102.PÓïðàæíåíèå 1.103.PÓïðàæíåíèå 1.104.Óïðàæíåíèå 1.105.P |= A0 ⇐⇒ A0 ∈ MP .Ïóñòü t1 , t2 , .

. . , tk ýòî íåêîòîðûé íàáîð îñíîâíûõ òåðìîâ.Äîêàæèòå, ÷òî ïîäñòàíîâêà θ = {Y1 /t1 , . . . , Yk /tk } ÿâëÿåòñÿ ïðàâèëüíûì îòâåòîì íà çàïðîñG =?C1 , C2 , . . . , Cm ê õîðíîâñêîé ëîãè÷åñêîé ïðîãðàììå P òîãäà è òîëüêî òîãäà, êîãäà {C1 θ, . . . , Cm θ} ⊆MP .Äîêàæèòå, ÷òî äëÿ ëþáûõ õîðíîâñêèõ ëîãè÷åñêèõ ïðîãðàìì P1 è P2ñïðàâåäëèâî âêëþ÷åíèåÓïðàæíåíèå 1.106.Óïðàæíåíèå 1.107.MP1 ∪ MP2 ⊆ MP1 ∪P2 .28Ãëàâà 1.ÓÏÐÀÆÍÅÍÈßÏðèâåäèòå ïðèìåð ïðîãðàìì P1 è P2 , äëÿ êîòîðûõ óêàçàííîå âêëþ÷åíèå ÿâëÿåòñÿ ñòðîãèì.Êàêèì èç òðåõ òåîðåòèêî-ìíîæåñòâåííûõ îòíîøåíèé ⊆, =, ⊇ ñâÿçàíû ýðáðàíîâñêèå èíòåðïðåòàöèè MP ∩ MP è MP ∩P ?11.11212Òåîðåìû êîððåêòíîñòè è ïîëíîòû äëÿ õîðíîâñêèõ ëîãè÷åñêèõ ïðîãðàìì.Ñîõðàíÿò ëè ñïðàâåäëèâîñòü òåîðåìû êîððåêòíîñòè è ïîëíîòû äëÿõîðíîâñêèõ ëîãè÷åñêèõ ïðîãðàìì, åñëè â îïðåäåëåíèè ïðàâèëà SLD-ðåçîëþöèè âìåñòî íàèáîëåå îáùåãî óíèôèêàòîðà ðàçðåøèòü èñïîëüçîâàòü ïðîèçâîëüíûé óíèôèêàòîð âûäåëåííîéïîäöåëè çàïðîñà è çàãîëîâêà àêòèâèçèðîâàííîãî ïðîãðàììíîãî óòâåðæäåíèÿ?Îïåðàòîðîì íåïîñðåäñòâåííîãî ñëåäîâàíèÿ TP äëÿ õîðíîâñêîé ëîãè÷åñêîé ïðîãðàììû P íàçûâàåòñÿ îòîáðàæåíèåÓïðàæíåíèå 1.108.Óïðàæíåíèå 1.109.TP : 2BP → 2BP ,ñîïîñòàâëÿþùåå êàæäîé ýðáðàíîâñêîé èíòåðïðåòàöèè I, I ⊆ BP , ýðáðàíîâñêóþ èíòåðïðåòàöèþ I 0 = TP (I), I 0 ⊆ BP , óäîâëåòâîðÿþùóþ ñëåäóþùåìó ñîîòíîøåíèþ:I 0 = {A0 : D = A0 ← A1 , .

. . , Ak ∈ [P], {A1 , . . . , Ak } ⊆ I}.Äîêàæèòå, ÷òî äëÿ ëþáîé ýðáðàíîâñêîé ìîäåëè I äëÿ õîðíîâñêîé ëîãè÷åñêîé ïðîãðàììû Pèíòåðïðåòàöèÿ TP (I) òàêæå ÿâëÿåòñÿ ìîäåëüþ äëÿ ïðîãðàììû P .Ïóñòü çàäàíà õîðíîâñêàÿ ëîãè÷åñêàÿ ïðîãðàììàP : P(f(X)) ← P(X);ñèãíàòóðû Σ = hConst = {c}, F unc = {f }, P red = {P }i, ñîñòîÿùàÿ èç îäíîãî-åäèíñòâåííîãîïðîãðàììíîãî óòâåðæäåíèÿ.Êàêèå ýðáðàíîâñêèå èíòåðïðåòàöèè ÿâëÿþòñÿ çíà÷åíèÿìè îïåðàòîðà íåïîñðåäñòâåííîãî ñëåäîâàíèÿ TP (∅) è TP (BP ?Ïóñòü çàäàíà õîðíîâñêàÿ ëîãè÷åñêàÿ ïðîãðàììàP : P(X) ← R(X), P(c);Óïðàæíåíèå 1.110.Óïðàæíåíèå 1.111.R(b) ← P(a);R(a);P(c);Âû÷èñëèòå çíà÷åíèÿ îïåðàòîðà íåïîñðåäñòâåííîãî ñëåäîâàíèÿ TP (∅), TP (TP (∅)), TP (TP (TP (∅)))?Äîêàæèòå, ÷òî äëÿ ëþáîé õîðíîâñêîé ëîãè÷åñêîé ïðîãðàììû P îïåðàòîð íåïîñðåäñòâåííîãî ñëåäîâàíèÿ TP îáëàäàåò ñâîéñòâîì ìîíîòîííîñòè, ò. å.

äëÿ ëþáûõýðáðàíîâñêèõ èíòåðïðåòàöèé I, J ñïðàâåäëèâî ñîîòíîøåíèåÓïðàæíåíèå 1.112.1.12.29Ñòðàòåãèè âû÷èñëåíèÿ ëîãè÷åñêèõ ïðîãðàìì.I ⊆ J =⇒ TP (I) ⊆ TP (J) .Äîêàæèòå, ÷òî ýðáðàíîâñêàÿ èíòåðïðåòàöèÿ I ÿâëÿåòñÿ ìîäåëüþ äëÿõîðíîâñêîé ëîãè÷åñêîé ïðîãðàììû P â òîì è òîëüêî òîì ñëó÷àå, êîãäà TP (I) ⊆ I .Óïðàæíåíèå 1.113.Óñëîâèìñÿ n-êðàòíóþ êîìïîçèöèþ îïåðàòîðà íåïîñðåäñòâåííîãî ñëåäîâàíèÿ îáîçíà÷àòü TPn , ò. å. TPn (I) = T| P (TP{z(. . . TP}(I) . . .

)).n ðàçÄîêàæèòå, ÷òî äëÿ ëþáîé õîðíîâñêîé ëîãè÷åñêîé ïðîãðàììû P èìååò ìåñòî ñëåäóþùàÿ öåïî÷êà âêëþ÷åíèéÓïðàæíåíèå 1.114.TP0 (∅) ⊆ TP1 (∅) ⊆ TP2 (∅) ⊆ · · · ⊆ TPi (∅) ⊆ TPi+1 (∅) ⊆ . . . ⊆ MP .Äîêàæèòå, ÷òî ýðáðàíîâñêàÿ èíòåðïðåòàöèÿ S TPi (∅) ÿâëÿåòñÿ ìîäåi=0ëüþ äëÿ õîðíîâñêîé ëîãè÷åñêîé ïðîãðàììû P .∞Óïðàæíåíèå 1.115.Äîêàæèòå,÷òî äëÿ ëþáîé õîðíîâñêîé ëîãè÷åñêîé ïðîãðàììû P èìååò∞Siìåñòî ðàâåíñòâî MP = TP (∅).Óïðàæíåíèå 1.116.i=0Äîêàæèòå, ÷òî äëÿ ëþáîé õîðíîâñêîé ëîãè÷åñêîé ïðîãðàììû P èëþáîãî îñíîâíîãî àòîìà A çàïðîñ ?A ê ïðîãðàììå P èìååò óñïåøíîå SLD-ðåçîëþòèâíîå âû÷èñëåíèå òîãäà è òîëüêî òîãäà, êîãäà A ∈ MP .Óïðàæíåíèå 1.117.Äîêàæèòå, ÷òî äëÿ ëþáîé õîðíîâñêîé ëîãè÷åñêîé ïðîãðàììû P çàïðîññ ìíîæåñòâîì öåëåâûõ ïåðåìåííûõ Y1 , Y2 , . .

. , Ym , îáðàùåííûé ê ïðîãðàììå èìååò õîòÿ áû îäíî óñïåøíîå SLD-ðåçîëþòèâíîå âû÷èñëåíèå â òîì è òîëüêî òîì ñëó÷àå,êîãäà èìååò ìåñòî ëîãè÷åñêîå ñëåäñòâèå P |= ∃Y1 ∃Y2 . . . ∃Ym (C1 &C2 & . . . &Cn ).Óïðàæíåíèå 1.118.G =?C1 , C2 , . . . , CnPÂåðíî ëè, ÷òî äëÿ ëþáîé õîðíîâñêîé ëîãè÷åñêîé ïðîãðàììû P èàòîìà A ëîãè÷åñêîå ñëåäñòâèå P |= ∀Y1 ∀Y2 . . . ∀Ym A èìååò ìåñòî òîãäà è òîëüêî òîãäà, êîãäàâûïîëíÿåòñÿ âêëþ÷åíèå [A] ⊆ MP ?Óïðàæíåíèå 1.119.1.12Ñòðàòåãèè âû÷èñëåíèÿ ëîãè÷åñêèõ ïðîãðàìì.Ïîñòðîéòå äåðåâî SLD-ðåçîëþòèâíûõ âû÷èñëåíèé äëÿ çàïðîñà G= ?îáðàùåííîãî ê ïðîãðàììå P , èñïîëüçóÿ ñòàíäàðòíîå ïðàâèëî âûáîðà ïîäöåëåé.Óïðàæíåíèå 1.120.P(X,b),:P P(X,Z) ← Q(X,Y),P(Y,Z);P(X,X) ← ;Q(a,b) ← ;30Ãëàâà 1.ÓÏÐÀÆÍÅÍÈßÏðåäïîëîæèì, ÷òî â òåëå ïåðâîãî ïðîãðàììíîãî óòâåðæäåíèÿ P(X,Z) ← Q(X,Y),P(Y,Z);ïðîãðàììèñò ïîìåíÿë ìåñòàìè àòîìû Q(X,Y) è P(Y,Z).

Êàê èçìåíèòñÿ â ýòîì ñëó÷àå äåðåâîSLD-ðåçîëþòèâíûõ âû÷èñëåíèé çàïðîñà G?Ïîñòðîéòå äåðåâî SLD-ðåçîëþòèâíûõ âû÷èñëåíèé äëÿ çàïðîñà G= ?îáðàùåííîãî ê ïðîãðàììå P , èñïîëüçóÿ ñòàíäàðòíîå ïðàâèëî âûáîðà ïîäöåëåé.Óïðàæíåíèå 1.121.R(Y),P(Z),:P R(Y) ← P(Y),Q(Y);P(a) ← ;P(b) ← ;Q(a) ← ;Q(f(X)) ← Q(X);Ïðåäïîëîæèì, ÷òî â òåëå ïåðâîãî ïðîãðàììíîãî óòâåðæäåíèÿ R(Y) ← P(Y),Q(Y); ïðîãðàììèñò ïîìåíÿë ìåñòàìè àòîìû P(Y) è Q(Y).

Êàê èçìåíèòñÿ â ýòîì ñëó÷àå äåðåâî SLD-ðåçîëþòèâíûõâû÷èñëåíèé çàïðîñà G?Èìååò ëè çàïðîñ G= ? P(a,c), îáðàùåííûé ê ïðîãðàììå P , õîòÿ áûîäíî óñïåøíîå SLD-ðåçîëþòèâíîå âû÷èñëåíèå?P : P(a,b) ← ;Óïðàæíåíèå 1.122.P(c,b) ← ;P(X,Z) ← P(X,Y),P(Y,Z);P(X,Y) ← P(Y,X);Ïîêàæèòå, ÷òî â òîì ñëó÷àå, åñëè èç óêàçàííîé ïðîãðàììû óäàëèòü õîòÿ áû îäíî ïðîãðàììíîåóòâåðæäåíèå, òî çàïðîñ G íå áóäåò èìåòü íè îäíîãî ïðàâèëüíîãî îòâåòà. Ïîêàæèòå, ÷òî ðóêîâîäñòâóÿñü ñòàíäàðòíîé ñòðàòåãèåé âû÷èñëåíèé íåëüçÿ âû÷èñëèòü íè îäèí îòâåò íà çàïðîñG, îáðàùåííûé ê ïðîãðàììå P .

Êàêîé äîëæíà áûòü ñòðàòåãèÿ âû÷èñëåíèé, ïîçâîëÿþùàÿâû÷èñëèòü õîòÿ áû îäèí îòâåò íà çàïðîñ G ê ïðîãðàììå P .Ïðèâåäèòå ïðèìåð òàêîé õîðíîâñêîé ëîãè÷åñêîé ïðîãðàììû P è òàêîãî çàïðîñà G, äëÿ êîòîðûõ ñóùåñòâóþò äâà óñïåøíûõ âû÷èñëåíèÿ, íî ïðè ýòîì íèêàêîåïðàâèëî âûáîðà ïîäöåëåé íå ïîçâîëÿåò ïîñòðîèòü, ðóêîâîäñòâóÿñü ïðîöåäóðîé ïîèñêà â ãëóáèíó ñ âîçâðàòîì, îáà óñïåøíûõ âû÷èñëåíèÿ.Óïðàæíåíèå 1.123.Cîçäàéòå õîðíîâñêèå ëîãè÷åñêèå ïðîãðàììû, êîòîðûå ðåøàþò ñëåäóþùèå çàäà÷è.1.

Ïðîãðàììà ïîðîæäàåò âñåâîçìîæíûå ïåðåñòàíîâêè ýëåìåíòîâ çàäàííîãî ñïèñêà L. Îáðàùåíèå ê ïðîãðàììå äîëæíî èìåò âèä ? permut(L,X).2. Ïðîãðàììà ïîðîæäàåò âñåâîçìîæíûå ïðåôèêñû çàäàííîãî ñëîâà L, ïðåäñòàâëåííîãîñïèñêîì áóêâ. Îáðàùåíèå ê ïðîãðàììå äîëæíî èìåò âèä ? all_prefixes(L,X).Óïðàæíåíèå 1.124.1.13.31Àëãîðèòìè÷åñêàÿ ïîëíîòà è àëãîðèòìè÷åñêàÿ íåðàçðåøèìîñòü.3. Ïðîãðàììà ïîðîæäàåò âñåâîçìîæíûå ñóôôèêñû çàäàííîãî ñëîâà L, ïðåäñòàâëåííîãîñïèñêîì áóêâ. Îáðàùåíèå ê ïðîãðàììå äîëæíî èìåò âèä ? all_suffixes(L,X).4. Ïðîãðàììà ïîðîæäàåò ñïèñîê âñåõ áóêâ çàäàííîãî êîíå÷íîãî àëôàâèòà A = {a1 , a2 , .

. . , an },ñîäåðæàùèõñÿ â ñïèñêå L îäíîêðàòíî. Îáðàùåíèå ê ïðîãðàììå äîëæíî èìåò âèä ?single(L,X).5. Ïðîãðàììà ïîðîæäàåò ñïèñîê âñåõ áóêâ çàäàííîãî êîíå÷íîãî àëôàâèòà A = {a1 , a2 , . . . , an },ñîäåðæàùèõñÿ â ñïèñêå L ìíîãîêðàòíî. Îáðàùåíèå ê ïðîãðàììå äîëæíî èìåò âèä ?multiple(L,X).6. Ïðîãðàììà ïîðîæäàåò ñïèñîê âñåõ áóêâ çàäàííîãî êîíå÷íîãî àëôàâèòà A = {a1 , a2 , . .

. , an },ñîäåðæàùèõñÿ â ñïèñêå L1 è íå ñîäåðæàùèõñÿ â ñïèñêå L2 . Îáðàùåíèå ê ïðîãðàììåäîëæíî èìåò âèä ? filter(L1,L2,X).7. Ïðîãðàììà ïîðîæäàåò âñåâîçìîæíûå ñî÷åòàíèÿ ýëåìåíòîâ çàäàííîãî áåñïîâòîðíîãî ñïèñêà L1 . Îáðàùåíèå ê ïðîãðàììå äîëæíî èìåò âèä ? combination(L1,X).8. Ïðîãðàììà ïîðîæäàåò âñåâîçìîæíûå ñî÷åòàíèÿ ýëåìåíòîâ çàäàííîãî áåñïîâòîðíîãî ñïèñêà L1 , äëèíà êîòîðûõ ðàâíà äëèíå çàäàííîãî ñïèñêà L2 .

Характеристики

Список файлов учебной работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6310
Авторов
на СтудИзбе
312
Средний доход
с одного платного файла
Обучение Подробнее