Диссертация (1149859), страница 18
Текст из файла (страница 18)
Vol. 368, № 1-2. P. 286–298.Morin M., Trivero F. Influence of thermal cycling on the reversible martensitictransformation in a Cu-Al-Ni shape memory alloy // Mater. Sci. Eng. A. 1995. Vol.5093, № 94. P. 5–9.12969.70.71.72.73.74.75.76.77.78.79.80.81.82.83.Belyaev S., Resnina N. Stability of mechanical behavior and work performance inTiNi-based alloys during thermal cycling // Int. J. Mater.
Res. Hanser, 2013. Vol.104, № 1. P. 11–17.Urbina C., Flor S.D. la, Ferrando F. Effect of thermal cycling on thethermomechanical behaviour of NiTi shape memory alloys // Mater. Sci. Eng. A.2009. № 501. P. 197–206.X. He, L. Zhao, X. Wang, R. Zhang, M. Li. Transformation behaviour with thermalcycling in Ti50Ni43Cu7 shape memory alloy. 2006. Vol. 427.
P. 327–330.Filip P., Mazanec K. Influence of cycling on the reversible martensitic transformationand shape memory phenomena in TiNi alloys // Scr. Metall. Mater. 1994. Vol. 30, №c. P. 67–72.McCormick P.G., Liu Y. Thermodynamic analysis of the martensitic transformationin NiTi—II. Effect of transformation cycling // Acta Metall. Mater. 1994. Vol.
42, №7. P. 2407–2413.A. Ibarra, J. San Juan, E.H. Bocanegra, M.L. No. Evolution of microstructure andthermomechanical properties during superelastic compression cycling in Cu–Al–Nisingle crystals // Acta Mater. 2007. Vol. 55, № 14. P. 4789–4798.A. Shibata, S. Morito, T. Furuhara, T.
Makia. Substructures of lenticular martensiteswith different martensite start temperatures in ferrous alloys // Acta Mater. ActaMaterialia Inc., 2009. Vol. 57, № 2. P. 483–492.R.F. Hamilton, H. Sehitoglu, Y. Chumlyakov, H.J. Maier. Stress dependence of thehysteresis in single crystal NiTi alloys // Acta Mater. 2004. Vol. 52, № 11. P.
3383–3402.Schuh C., Dunand D.C. Non-isothermal transformation-mismatch plasticity:modeling and experiments on Ti–6Al–4V // Acta Mater. 2001. Vol. 49, № 2. P. 199–210.Lagoudas D. Shapememoryalloys. ModelingandEngineeringApplications. 2008. P.435.Terriault P., Brailovski V. Modeling of shape memory alloy actuators usingLikhachev’s formulation // J.
Intell. Mater. Syst. …. 2011. Vol. 22, № 4. P. 353–368.Patoor E. et al. Shape memory alloys, Part I: General properties and modeling ofsingle crystals // Mech. Mater. 2006. Vol. 38, № 5-6. P. 391–429.Cormier J., Cailletaud G. Constitutive modeling of the creep behavior of singlecrystal superalloys under non-isothermal conditions inducing phase transformations //Mater. Sci. Eng. A. Elsevier B.V., 2010.
Vol. 527, № 23. P. 6300–6312.Lagoudas D.C. et al. Shape memory alloys, Part II: Modeling of polycrystals // Mech.Mater. 2006. Vol. 38, № 5-6. P. 430–462.Shape Memory Alloys: Fundumentals, Modeling and Industrial Applications / ed.Trochu F. et al. Quebec City: Canadian Institute of Mining, Metallurgy andPetroleum, 1999.13084.85.86.87.88.89.90.91.92.93.94.95.96.97.98.99.Bouvet C., Calloch S., Lexcellent C. A phenomenological model for pseudoelasticityof shape memory alloys under multiaxial proportional and nonproportional loadings// Eur. J. Mech. - A/Solids.
2004. Vol. 23, № 1. P. 37–61.Волков А.Е. Микроструктурное моделирование деформации сплавов приповторяющихся мартенситных превращениях // Изв. Академии Наук. Сер.Физическая. 2002. Vol. 66, № 9. P. 1290–1297.Roubíček T. Models of microstructure evolution in shape memory alloys // NonlinearHomog. its Appl. to …. 2005. P. 269–304.Anand L., Gurtin M.E. Thermal effects in the superelasticity of crystalline shapememory materials // J.
Mech. Phys. Solids. 2003. Vol. 51, № 6. P. 1015–1058.Patoor E. Micromechanical modelling of superelasticity in shape memory alloys // J.Phys. IV. 1996. Vol. 06, № C1. P. C1–277–C1–292.Lagoudas D.C., Bhattacharyya a. On the Correspondence between MicromechanicalModels for Isothermal Pseudoelastic Response of Shape Memory Alloys and thePreisach Model for Hysteresis // Math. Mech. Solids.
1997. Vol. 2, № 4. P. 405–440.Lu Z.K., Weng G.J. A self-consistent model for the stress–strain behavior of shapememory alloy polycrystals // Acta Mater. 1998. Vol. 46, № 15. P. 5423–5433.Tanaka K. A thermomechanical sketch of shape memory effect: one-dimensionaltensile behavior // Res Mech. 1986. P. 251–263.Liang C., Rogers C.
a. One-Dimensional Thermomechanical Constitutive Relationsfor Shape Memory Materials // J. Intell. Mater. Syst. Struct. 1990. Vol. 1, № 2. P.207–234.Auricchio F., Sacco E. A one-dimensional model for superelastic shape-memoryalloys with different elastic properties between austenite and martensite // Int. J. Non.Linear. Mech.
1997. Vol. 32, № 6.Brinson L.C. One-Dimensional Constitutive Behavior of Shape Memory Alloys:Thermomechanical Derivation with Non-Constant Material Functions and RedefinedMartensite Internal Variable // J. Intell. Mater. Syst. Struct. 1993. Vol. 4, № 2. P.229–242.K. Tanaka, T. Hayashi, Y. Itoh, H. Tobushi. Analysis of thermomechanical behaviorof shape memory alloys // Mech. Mater. 1992. Vol. 13, № 3.
P. 207–215.Tobushi H., Iwanaga H., Tanaka K. Deformation behaviour of TiNi shape memoryalloy subjected to variable stress and temperature // Contin. Mech. 1991. Vol. 3. P.79–93.Лихачев В.А., Малинин В.Г. Структурно-аналитическая теория прочности.СПб.: Наука, 1993. P. 471.Terriault P., Trouchu F., Volkov A.E. Structure-analytical model // Shape Mem.Alloy. Fundumentals, Model. Ind. Appl. / ed. Trochu F. et al.
Quebec City: CanadianInstitute of Mining, Metallurgy and Petroleum, 1999. P. 586–634.Raj S.V., Noebe R.D. Low temperature creep of hot-extruded near-stoichiometricNiTi shape memory alloy part II: Effect of thermal cycling // Mater. Sci. Eng. A.Elsevier, 2013. Vol. 581. P. 154–163.131100.
S. Manchiraju, D. Gaydosh, O. Benafan, R. Noebe, R. Vaidyanathan, P. M.Anderson. Thermal cycling and isothermal deformation response of polycrystallineNiTi: Simulations vs. experiment // Acta Mater. Acta Materialia Inc., 2011. Vol.
59,№ 13. P. 5238–5249.101. B. Coluzzi , A. Biscarini , R. Campanella, G. Mazzolai, L. Trotta, F.M. Mazzolai.Effect of thermal cycling through the martensitic transition on the internal frictionand Young’s modulus of a Ni 50.8 Ti 49.2 alloy. 2000. Vol. 310. P. 300–305.102. S. Belyaev, N. Resnina, A. Sibirev, I. Lomakin.
Variation in kinetics of martensitictransformation during partial thermal cycling of the TiNi alloy // Thermochim. Acta.Elsevier B.V., 2014. Vol. 582. P. 46–52.103. Ye B., Majumdar B.S., Dutta I. Texture development and strain hysteresis in a NiTishape-memory alloy during thermal cycling under load // Acta Mater. ActaMaterialia Inc., 2009. Vol. 57, № 8. P. 2403–2417.104. Zhang L., Xie C., Wu J. Martensitic transformation and shape memory effect of Ti–49at.%Ni alloys // Mater.
Sci. Eng. A. 2006. Vol. 438-440. P. 905–910.105. Liu Y., Van Humbeeck J. On the Damping Behaviour of NiTi Shape Memory Alloy.1997. Vol. 7.106. Liu Y., McCormick P. Thermodynamic analysis of the martensitic transformation inNiTi—I. Effect of heat treatment on transformation behaviour // Acta Metall. Mater.1994. Vol. 42, № 7. P. 2401–2406.107. Raj S. V, Noebe R.D.
Low Temperature Creep of Hot-Extruded Near-StoichiometricNiTi Shape Memory Alloy Part I : Isothermal Creep. 2013. № June.108. G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, M.Wagner. Structural andfunctional fatigue of NiTi shape memory alloys // Mater. Sci. Eng. A. 2004.
Vol.378, № 1-2. P. 24–33.109. T.W. Duerig, A.R. Pelton. TiNi Shape Memory Alloys. / Materials PropertiesHandbook Titanium Alloys 1994, pp. 1035‐1048.110. Principles and Applications of Thermal Analysis / ed. Gabbott P. New Delphi:Blackwell Publishing, 2008.111. Khalil Allafi J., Ren X., Eggeler G. The mechanism of multistage martensitictransformations in aged Ni-rich NiTi shape memory alloys // Acta Mater. 2002. Vol.50, № 4. P. 793–803.112. N. Zhou, C. Shen, M.F.-X. Wagner, G. Eggeler, M.J. Mills, Y.
Wanga,. Effect ofNi4Ti3 precipitation on martensitic transformation in Ti–Ni // Acta Mater. ActaMaterialia Inc., 2010. Vol. 58, № 20. P. 6685–6694.113. Miyazaki S., Wayman C.M. The R-phase transition and associated shape memorymechanism in Ti-Ni single crystals // Acta Met. 1988. Vol. 36.
P. 181.114. Schryvers D., Potapov P.L.P. R-Phase Structure Refinement Using ElectronDiffraction Data // Mater. Trans. 2002. Vol. 43, № 5. P. 774–779.115. Беляев С.П., Кузьмин С.Л., Лихачев В.А. Обратимый эффект памяти формы какрезультат термоциклической тренировки под нагрузкой // Проблемыпрочности. 1988. Vol. 7. P. 50–54.132116.
Basinski Z.S., Dugdale J.S., Howie a. The electrical resistivity of dislocations //Philos. Mag. 1963. Vol. 8, № 96. P. 1989–1997..















