Диссертация (1149859), страница 17
Текст из файла (страница 17)
50, № 5. P. 511–678.Pelton A.R., Stöckel D., Duerig T.W. Medical Uses of Nitinol // Proc. Int. Symp.Shape Mem. Mater. 1999. 2000. Vol. 327-328. P. 63–70.Duerig T., Pelton A, Stöckel D. An overview of nitinol medical applications // Mater.Sci. Eng. A. 1999. Vol. 273-275. P. 149–160.Poncet P. Applications of superelastic nitinol tubing // Mem.
Corp. USA. 1994. Vol.3416.Stoeckel D. Shape Memory Actuators for Automotive Applications. 1990.Mohd Jani J., M. Leary, A. Subic, Mark A. Gibson. A review of shape memory alloyresearch, applications and opportunities // Mater. Des. Elsevier Ltd, 2014. Vol. 56. P.1078–1113..Miga Motors Products [Online]. URL: http://www.migamotors.com.Matsumoto H. Irreversibility in transformation behavior of equiatomic nickel–titanium alloy by electrical resistivity measurement // J. Alloys Compd.
2004. Vol.368, № 1-2. P. 182–186.Lin H., Wu S. Strengthening effect on shape recovery characteristic of theequiatomic TiNi alloy // Scr. Metall. Mater. 1992. Vol. 26, № c. P. 59–62.Stachowiak G.B., McCormick P.G. Shape memory behaviour associated with the Rand martensitic transformations in a NiTi alloy // Acta Met. 1988. Vol. 36. P. 291–297.Tang W., Sandström R. Analysis of the influence of cycling on TiNi shape memoryalloy properties // Mater. Des. 1993. Vol. 14, № 2. P. 103–113.Furuya Y., Park Y.C.
Thermal cyclic deformation and degradation of shape memoryeffect in Ti-Ni alloy // Nondestruct. Test. Eval. 1992. Vol. 8-9, № 1-6. P. 541–554.Wayman C.M., Cornelis I., Shimizu K. Transformation behavior and the shapememory in thermally cycled TiNi // Scr. Metall. 1972. Vol. 6. P. 115–122.Resnina N., Belyaev S. Multi-stage martensitic transformations induced by repeatedthermal cycling of equiatomic TiNi alloy // J.
Alloys Compd. 2009. Vol. 486, № 1-2.P. 304–308.A.R. Pelton, G.H. Huang, P. Moinec, R. Sinclaird. Effects of thermal cycling onmicrostructure and properties in Nitinol // Mater. Sci. Eng. A. Elsevier B.V., 2012.Vol. 532. P. 130–138.T. Ezaz, J. Wang, H. Sehitoglu, H.J.
Maier. Plastic deformation of NiTi shapememory alloys // Acta Mater. Acta Materialia Inc., 2013. Vol. 61, № 1. P. 67–78.Benjamin M. Irradiation swelling, creep, thermal shock and thermal cycling fatigueanalysis of cylindrical controlled thermonuclear reactor first wall // Nucl. Eng.
Des.1974. Vol. 28, № 1. P. 1–30.12618.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.Miyazaki S., Igo Y., Otsuka K. Effect of thermal cycling on the transformationtemperatures of TiNi alloys // Acta Met. 1986. Vol. 34. P. 2045–2051.Morgan N.B., Friend C.M. A review of shape memory stability in NiTi alloys // JPhys IV.
2001. Vol. 11. P. 325–332.T. Simon, A. Kroger, C. Somsen, A. Dlouhy, G. Eggeler. On the multiplication ofdislocations during martensitic transformations in NiTi shape memory alloys // ActaMater. 2010. Vol. 58, № 5. P. 1850–1860.Kwarciak J., Lekston Z., Morawirec H. Effect of Thermal Cycling And Ti2NiPrecipitation on the Stability of the Ni-Ti Alloys // J Sci Mater. 1987. Vol. 7.
P.2341–2345.Tadaki T., Nakata Y., SHIMIZU K. Thermal cycling effects in an aged Ni-rich Ti-Nishape memory alloy // Japan Inst. Met. Trans. 1987.Khalil-allafi J., Dlouhy A., Eggeler G. Ni4Ti3 -precipitation during aging of NiTishape memory alloys and its influence on martensitic phase transformations.
2002.Vol. 50. P. 4255–4274.C. Li, L. Chiang, Y. Hsu, W. Wang. Cold Rolling-Induced MultistageTransformation in Ni-Rich NiTi Shape Memory Alloys // Mater. Trans. 2008. Vol.49, № 9. P. 2136–2140.Wasilewski R. Martensitic transformation and fatigue strength in TiNi // Scr.
Metall.1971. P. 1–5.Otsuka K., Ren X. Martensitic transformations in nonferrous shape memory alloys //Mater. Sci. Eng. A. 1999. Vol. 273-275. P. 89–105.Liu Y., McCormick P. Influence of heat treatment on the mechanical behaviour of aNiTi alloy // ISIJ Int. 1989. Vol. 29, № 5. P. 417–422.Коваленко А.Д. Введение в термоупругость. Киев: Наукова думка, 1965.Давиденков Н.Н., Лихачев В.А.
Необратимое формоизменение металлов прициклическом тепловом воздействии. Ленинград: Машгиз [Ленинградское отдние], 1962.Kench J., Chamberlain J., Young A. Incremental collapse in α-uranium subjected tothermal cycles while undergoing creep // J. Nucl. Mater. 1962. Vol. 2, № 2. P.
165–181.Siegmund T., Werner E., Fischer F. The irreversible deformation of a duplexstainless steel under thermal cycling // Mater. Sci. Eng. A. 1993. Vol. 169. P. 125–134.Jiang Q., Fang J., Guan Q. Thermomechanical fatigue behavior of Cr–Ni–Mo casthot work die steel // Scr. Mater. 2001. Vol. 45, № 2. P. 199–204.J.
Cormier, M. Jouiad, F. Hamon, P. Villechaise, X. Milhet. Very high temperaturecreep behavior of a single crystal Ni-based superalloy under complex thermal cyclingconditions // Philos. Mag. Lett. 2010. Vol. 90, № 8. P. 611–620.Курдюмов Г.В., Хандрос Л.Г. О термоупругом равновесии при мартенситныхпревращениях // Доклады Академии наук СССР. 1949. Vol. 66, № 2. P. 211–214.12735.36.37.38.39.40.41.42.43.44.45.46.47.48.49.50.51.Хачин В.Н., Пушин В.Г., Кондратьев В.В. Никелид титана: Структура исвойства.
Наука, 1992. P. 159.Пушин, В.Г., Прокошкин, С.Д., Валиев, Р.З., Браиловский, В., Волков, А.Е.,Глезер, А.М.. Сплавы никелида титана с памятью формы. Часть 1. Структура,фазовые превращения и свойства / ed. Пушин В.. Екатеринбург, 2006.Salzbrenner R., Cohen M. On the thermodynamics of thermoelastic martensitictransformations // Acta Metall. 1979.Kauffman G.B.G., Mayo I. The story of nitinol: the serendipitous discovery of thememory metal and its applications // Chem. Educ. 1996. Vol. 2, № 2. P. 1–21.Chang L.C., Read T.A. Plastic deformation and diffusionless phase changes inmetals-the Gold-Cadmium beta phase // Trans. AIMS, J. Met.
1951. Vol. 191. P. 47–52.Курдюмов Г.В. Микроструктурное исследование кинетики мартенситныхпревращений в сплавах медь олово // Журнал технической физики. 1949. Vol. 7.P. 32–36.Basinski Z.S.Z., Christian J.J.W. Crystallography of deformation by twin boundarymovements in indium-thallium alloys // Acta Metall. 1954. Vol. 2, № 1. P.
101–113.Nishida M., Wayman C.M., Honma T. Phase transformations in a Ti50Ni47.5Fe2.5shape memory alloy // Metallography. 1986. Vol. 19, № 1. P. 99–113.Shimizu K. Effect of ageing and thermal cycling on shape memory alloys // JElectron Microsc. 1985. Vol. 34.
P. 277–278.Hwang C.M., Wayman C.M. Phase transformations in TiNiFe, TiNiAl and TiNialloys // Scr. Metall. 1983. Vol. 17, № 11. P. 1345–1350.Van Humbeeck J. Cycling effects. Fatigue and degradation of shape memory alloys //J. Phys. IV. 1991. Vol. 1. P. C4–199.Liu Y., McCormick P.G.
Factors influencing the development of two-way shapememory in NiTi // Acta Met. Mater. 1990. Vol. 38. P. 1321–1326.Jean R., Duh J. The thermal cycling effect on Ti-Ni-Cu shape memory alloy // Scr.Metall. Mater. 1995. Vol. 32, № 6. P. 885–890.Amengual A., Likhachev A., Cesari E. An experimental study of the partialtransformation cycling of shape-memory alloys // Scr. Mater. 1996. Vol.
34, № 10. P.1549–1554.Paradis A., Terriault P., Brailovski V. Modeling of residual strain accumulation ofNiTi shape memory alloys under uniaxial cyclic loading // Comput. Mater. Sci.Elsevier B.V., 2009. Vol. 47, № 2. P. 373–383.Li, Y., Mi, X., Gao, B., Tan, J.. Effects of thermomechanical cycling on the shapememory behavior and transformation temperatures of a Ni50.2Ti49.8 alloy // RareMet.
Vol. 27. P. 522–525.Gall K., Maier H.. Cyclic deformation mechanisms in precipitated NiTi shapememory alloys // Acta Mater. 2002. Vol. 50, № 18. P. 4643–4657.12852.53.54.55.56.57.58.59.60.61.62.63.64.65.66.67.68.Lin G.M., Lai J.K.L., Chung C.Y. Thermal cycling effects in Cu-Zn-Al shapememory alloy by positron lifetime measurements // Scr. Metall. Mater.
1995. Vol. 32,№ 11. P. 1865–1869.García R. Stabilization of martensite in Cu-Zn-Al shape memory alloys: effects of γprecipitates and thermal cycling // Scr. Mater. 2000. Vol. 42. P. 531–536.Liang X., Chen Y., Shen H., Zhang Z. Thermal cycling stability and two-way shapememory effect of Ni–Cu–Ti–Hf alloys // Solid state Commun. 2001.
Vol. 119. P.381–385.Xin Y., Li Y., Liu Z. Thermal stability of dual-phase Ni58Mn25Ga17 hightemperature shape memory alloy // Scr. Mater. Acta Materialia Inc., 2010. Vol. 63,№ 1. P. 35–38.S. Yang, Y. Liu, C. Wang, X. Liu. Martensite stabilization and thermal cyclingstability of two-phase NiMnGa-based high-temperature shape memory alloys // ActaMater. Acta Materialia Inc., 2012. Vol. 60, № 10. P.
4255–4267.Besseghini S., Villa E., Tuissi A. Ni- Ti- Hf shape memory alloy: effect of aging andthermal cycling // Mater. Sci. Eng. A. 1999. Vol. 275. P. 390–394.Ramaiah K.V., Saikrishna C.N., Bhaumik S.K. Ni24.7 Ti50.3 Pd25.0 hightemperature shape memory alloy with narrow thermal hysteresis and high thermalstability // Mater. Des. Elsevier Ltd, 2014. Vol. 56. P. 78–83.Wagner M.F.-X. et al. Effect of low-temperature precipitation on the transformationcharacteristics of Ni-rich NiTi shape memory alloys during thermal cycling //Intermetallics. Elsevier Ltd, 2010.
Vol. 18, № 6. P. 1172–1179.Uchil J., Kumara K.G., Mahesh K.K. Effect of thermal cycling on R-phase stabilityin a NiTi shape memory alloy // Mater. Sci. Eng. A. 2002. Vol. 332, № 1-2. P. 25–28.Wayman C.M., Cornelis I., Shimizu K.
Transformation behaviour and the shapememory in thermally cycled TiNi // Scr. Metall. 1972. Vol. 6. P. 115–122.Matsumoto H. Transformation behaviour with thermal cycling in NiTi alloys // J.Alloys Compd. 2003. Vol. 350. P. 213–217.Salamon M.B., Meichle M.E., Wayman C.M. Premartensitic phases of Ti50Ni47Fe3// Phys Rev B.
1985. Vol. 31. P. 7306.Wasilewski R.J., Butler S.R., Hanlon J.E. On the Martensitic Transformation in TiNi// Met. Sci. 1967. Vol. 1, № 1. P. 104–110.Scherngell H., Kneissl A.C. Influence of the microstructure on the stability of theintrinsic two-way shape memory effect. 1999. Vol.
275. P. 400–403.Y. Liu, J. Laeng, T.V. Chin, T. Nam. Partial thermal cycling of NiTi // J. AlloysCompd. 2008. Vol. 449, № 1-2. P. 144–147.Tsoi K., Schrooten J., Stalmans R. Part I. Thermomechanical characteristics of shapememory alloys // Mater. Sci. Eng. A. 2004.















