Автореферат (1149807), страница 2
Текст из файла (страница 2)
Òîãäà ïðè x ∈ [xk , xk+1] âûïîëíÿ7þòñÿ ñîîòíîøåíèÿ:|u(x) − ue(x)| ≤ h5 K0 ku(5) k[xk ,xk+1 ] , K0 = 0.02,|u0 (x) − ue0 (x)| ≤ h4 K1 ku(5) k[xk ,xk+1 ] , K1 = 0.125,à ïðè x ∈ [xk , xk+1):|u00 (x) − ue00 (x)| ≤ h3 K2 ku(5) k[xk ,xk+1 ] , K2 = 0.8.e (x), x ∈ [a, b], ñâÿçàííóþ ñ uÑëåäñòâèå. Ââåäåì ôóíêöèþ Ue(x) ñîîòíîøåíèåìe (x) = uUe(x), kf k[a,b) = sup[a,b) |f |.
Èìååìe − uk[a,b] ≤ K0 h5 ku(5) k[a,b] ,kUe 0 − u0 k[a,b] ≤ K1 h4 ku(5) k[a,b] ,kUe 00 − u00 k[a,b) ≤ K2 h3 ku(5) k[a,b] ,kUÄàþòñÿ îöåíêè ïîãðåøíîñòåé àïïðîêñèìàöèè ñ ïîìîùüþ öåíòðàëüíûõ ïîëèíîìèàëüíûõ ñïëàéíîâ â L2 :sZxj+1(ũ(x) −xju(x))2 dx5sZxj+1≤h K|u(5) (t)|2 dt = h5 Kku(5) kL2 [xj ,xj+1 ] ,xjãäå K = 0.0374.Äàëåå ñòðîèòñÿ äâàæäû íåïðåðûâíî äèôôåðåíöèðóåìîå ïðèáëèæåíèå íàïðîìåæóòêå [a,b]: íà êàæäîì [xk , xk+1 ) ïðèáëèæåíèå äëÿ u(x) áåðåì â âèäåeuek (x) = u(xk )ωk,0 (x) + u(xk+1 )ωk+1,0 (x)+Zxk+1+ Ck ωk,1 (x) + Ck+1 ωk+1,1 (x) +xkãäå êîýôôèöèåíòû Ck ÿâëÿþòñÿ ðåøåíèåì ñèñòåìû:Ck−1 − 6Ck + Ck+1 = fk ,8!u(t)dt ωk<1> (x),Zxkfk = 8(uk+1 − uk−1 )/h + 20Zxk+1u(t)dt −xk−1u(t)dt /h2 ,xkk = 1, .
. . , n − 1. ýòîé æå ãëàâå ïîëó÷åíà îöåíêà ïîãðåøíîñòè äâàæäû íåïðåðûâíî äèôôåðåíöèðóåìîãî ïðèáëèæåíèÿ ôóíêöèé ñ ïîìîùüþ áàçèñíûõ èíòåãðî-äèôôåðåíöèàëüíûõ ñïëàéíîâ ïÿòîãî ïîðÿäêà àïïðîêñèìàöèè ïåðâîé âûñîòû. Äîêàçàíàòåîðåìà:Ïóñòü u ∈ C 5[a, b], Uee äâàæäû íåïðåðûâíî äèôôåðåíöèðóåìîåïðèáëèæåíèå, ïîñòðîåííîå ñ ïîìîùüþ ïîëèíîìèàëüíûõ áàçèñíûõ ñïëàéíîâ,òîãäàαÒåîðåìà 1.ee − uα k[a,b) ≤ Ke α h5−α ku(5) k[a,b] , α = 0, 1, 2,kUãäå Ke0 = 0.5464, Ke1 = 2.2692, Ke2 = 5.6996.Âî âòîðîéãëàâåðàññìàòðèâàåòñÿ ñðåäíåêâàäðàòè÷åñêîå ïðèáëèæåíèå, ïî-ñòðîåííîå ñ ïîìîùüþ ïîëó÷åííûõ â ïåðâîé ãëàâå íåïðåðûâíî äèôôåðåíöèðóåìûõ áàçèñíûõ ñïëàéíîâ.Âòðåòüåé ãëàâåðàññìàòðèâàåòñÿ ïîñòðîåíèå ïðèáëèæåíèé ôóíêöèé è èõïðîèçâîäíûõ ñ ïîìîùüþ ëåâîñòîðîííèõ íåïðåðûâíî äèôôåðåíöèðóåìûõ ïîëèíîìèàëüíûõ èíòåãðî-äèôôåðåíöèàëüíûõ ñïëàéíîâ ïÿòîãî ïîðÿäêà àïïðîêñèìàöèè ïåðâîé âûñîòû.
Ïðåäïîëàãàåì, ÷òî èçâåñòíû çíà÷åíèÿ u(xk ), u0 (xk ),R xkk = 0, 1, . . . , n, xk−1u(t)dt, k = 1, . . . , n. Áóäåì ñòðîèòü ïðèáëèæåíèå u(x),x ∈ [xk , xk+1 ], k = 1, . . . , n − 1, â âèäåuek (x) = u(xk )ωk,0 (x) + u(xk+1 )ωk+1,0 (x)++ u0 (xk )ωk,1 (x) + u0 (xk+1 )ωk+1,1 (x) +Z!xku(t)dtxk−1ωk<−1> (x), (2)ãäå ωk,0 (x), ωk+1,0 (x), ωk,1 (x), ωk+1,1 (x), ωk<−1> (x) îïðåäåëÿåì èç óñëîâèéuek (x) = u(x) äëÿ u(x) = xi , i = 0, 1, 2, 3, 4.Ïîëîæèì supp ωk,α = [xk−1 , xk+1 ], α = 0, 1, supp ωk<−1> = [xk , xk+1 ].
Ïîëó÷àåì9ñëåäóþùèå ôîðìóëû áàçèñíûõ ñïëàéíîâ äëÿ x ∈ [xk , xk+1 ], x = xk +th, t ∈ [0, 1]:ωk,0 (xk + th) = (15t2 + 62t + 31)(t − 1)2 /31,ωk+1,0 (xk + th) = −t2 (45t2 − 28t − 48)/31,ωk<−1> (xk + th) = 30t2 (t − 1)2 /(31h),ωk,1 (xk + th) = th(62 + 85t)(t − 1)2 /62,ωk+1,1 (xk + th) = t2 h(35t + 27)(t − 1)/62.Ïðèáëèæåíèÿ âèäà (2) íàçûâàåì ëåâîñòîðîííèìè.Äîêàçàíà ëåììà îá îöåíêå ïîãðåøíîñòè ïðèáëèæåíèÿ ôóíêöèè è ïåðâîéïðîèçâîäíîé ñ ïîìîùüþ ëåâîñòîðîííèõ ïîëèíîìèàëüíûõ ñïëàéíîâ:Ïóñòü ôóíêöèÿ u ∈ C (5)[xk , xk+1], ue ïðèáëèæåíèå ëåâîñòîðîííèìè ïîëèíîìèàëüíûìè ñïëàéíàìè. Ñïðàâåäëèâû ñëåäóþùèå óòâåðæäåíèÿ:Ëåììà 3.|u(x) − ue(x)| ≤ h5 K0 ku(5) k[xk−1 ,xk+1 ] , x ∈ [xk , xk+1 ], K0 = 0.22,|u0 (x) − ue0 (x)| ≤ h4 K1 ku(5) k[xk−1 ,xk+1 ] , x ∈ [xk , xk+1 ], K1 = 0.6342.Â÷åòâåðòîé ãëàâåðàññìàòðèâàåòñÿ ïîñòðîåíèå áàçèñíûõ ñïëàéíîâ äâóõïåðåìåííûõ, êîòîðûå ìîãóò áûòü èñïîëüçîâàíû äëÿ ìîäåëèðîâàíèÿ ïðèáëèæåíèé ôóíêöèé.
Ïðèáëèæåíèå ñòðîèòñÿ â êàæäîé ýëåìåíòàðíîé ïðÿìîóãîëüíîéîáëàñòè ñåòêè óçëîâ, åñëè èçâåñòíû çíà÷åíèÿ ôóíêöèè â óçëàõ è çíà÷åíèÿ èíòåãðàëîâ ïî ýëåìåíòàðíûì îáëàñòÿì.Ïóñòü n è m - íàòóðàëüíûå ÷èñëà, òàêèå ÷òî n ≥ 2, m ≥ 1. Ïóñòü a, b, c, d äåéñòâèòåëüíûå ÷èñëà. Ðàññìîòðèì ïðÿìîóãîëüíóþ îáëàñòü Ω̄ = Ω ∪ Γ, ãäåΩ = {(x, y)|a < x < b, c < y < d}è Γ ÿâëÿåòñÿ ãðàíèöåé Ω. Ââåä¼ì a = x0 < x1 < . . . < xn+1 = b, c = y0 < y1 <.
. . < ym+1 = d, è ñåòêó ïðÿìûõ íà Ω̄, êîòîðàÿ äåëèò îáëàñòü Ω̄ íà ïðÿìîóãîëüíèêè Ω̄j,k = Ωj,k ∪ Γj,k ,Ωj,k = {(x, y)|x ∈ (xj , xj+1 ), y ∈ (yk , yk+1 )} ,Γj,k - ýòî ãðàíèöà Ωj,k , j = 0, . . . , n, k = 0, . . . , m, hj = xj+1 − xj , hk = yk+1 − yk .10Îáîçíà÷èì u(xj , yk ) êàê uj,k . Ïðåäïîëîæèì, ÷òî èçâåñòíû çíà÷åíèÿ èíòåãðàëîâ:<0>Ij,kZZ=Ω̄j,k<−1>u(x, y)dxdy, Ij,kZZ=u(x, y)dxdy.Ω̄j−1,kÏðèáëèæåíèå ũ(x, y) ê u(x, y) â ïðÿìîóãîëüíèêå Ω̄j,k áåðåì â âèäå:ũ(x, y) = uj,k W1 (x, y) + uj+1,k W2 (x, y) + uj,k+1 W3 (x, y)+<0><−1>+ uj+1,k+1 W4 (x, y) + Ij,kW5 (x, y) + Ij,kW6 (x, y), (3)ãäå áàçèñíûå ñïëàéíû Wi (x, y) ïîëó÷àþòñÿ èç óñëîâèé:ũ(x, y) = u(x, y) äëÿ u(x, y) = 1, x, y, xy, x2 , y 2 .Åñëè ïîëîæèòü hk = hj = h, x = xj + th, y = yk + t1 h, t, t1 ∈ [0, 1], òî ïîëó÷àåìñëåäóþùèå ôîðìóëû:W1 (xj + th, yk + t1 h) = − (1/2)t2 + 2t21 − 3t1 − (1/2)t + tt1 + 1,W2 (xj + th, yk + t1 h) = − tt1 + t21 − t1 + (1/2)t2 + (1/2)t,W3 (xj + th, yk + t1 h) = − tt1 + 2t21 − t1 + (1/2)t2 + (1/2)t,W4 (xj + th, yk + t1 h) =tt1 + t21 − t1 + (1/2)t2 − (1/2)t,W5 (xj + th, yk + t1 h) = − (1/h2 )(5t21 − 5t1 + t2 − t),W6 (xj + th, yk + t1 h) =(1/h2 )(−t21 + t1 + t2 − t).Àïïðîêñèìàöèè (3) îêàçûâàþòñÿ ðàçðûâíûìè â Ω.
 ðàáîòå óêàçàí ñïîñîá ïîñòðîåíèÿ íåïðåðûâíûõ àïïðîêñèìàöèé íà îñíîâå äàííûõ áàçèñíûõ ôóíêöèé.Äîêàçàíà òåîðåìà:Îáîçíà÷èì Ω̄h = {(x, y)|a + h ≤ x ≤ b, c ≤ y ≤ d}. Ïóñòü ôóíêöèÿu(x, y) ∈ C 3 (Ω̄). Ïðåäïîëîæèì, ÷òî hj = hk = h. Òîãäà äëÿ (x, y) ∈ Ω̄j,k ⊂ Ω̄hâûïîëíåíîÒåîðåìà 2.|ũ(x, y) − u(x, y)| ≤ h3 K||u||C 3 (Ω̄) , K = 1.Âïÿòîé ãëàâåñòðîÿòñÿ áàçèñíûå îäíîìåðíûå ïîëèíîìèàëüíûå è òðèãî-íîìåòðè÷åñêèå èíòåãðî-äèôôåðåíöèàëüíûå ñïëàéíû ïÿòîãî ïîðÿäêà àïïðîêñèìàöèè.11eÎáîçíà÷èì çà ue(x) ïðèáëèæåíèå ôóíêöèè u(x) íà èíòåðâàëå [xj , xj+1 ]:eue(x) = u(xj )eωj,0 (x) + u(xj+1 )eωj+1,0 (x) + u0 (xj )eωj,1 (x)+xj+1Z+u0 (xj+1 )eωj+1,1 (x) + u(t)dt ωej<0> (x), x ∈ [xj , xj+1 ]. (4)xjÁàçèñíûå ñïëàéíû ωej,0 (x), ωej+1,0 (x), ωej,1 (x), ωej+1,1 (x), ωej<0> (x), ïîëó÷àåì èç ñèñòåìû:eue(x) ≡ u(x), u(x) = 1, sin(kx), cos(kx), k = 1, 2.Ïîëó÷àåì äëÿ x = xj + th, t ∈ [0, 1] ñëåäóþùèå ôîðìóëû:ωej,0 (xj + th) = (6 sin(t h + h) − 8 cos(t h) h + 12 h cos(t h + h) − 4 h cos(−3 h +t h) + 15 sin(h) − 6 sin(2 h + t h) + 6 sin(−2 h + t h) + 3 sin(3 h) − 12 sin(2 h) +3 sin(−3 h + 2 t h) + 2 h cos(−3 h + 2 t h) + 6 h cos(−h + 2 t h) + 3 sin(h + 2 t h) −6 sin(−h + 2 t h) − 8 h cos(2 t h) − 6 sin(−3 h + t h))/(30 sin(h) − 24 sin(2 h) −16 h + 18 h cos(h) − 2 h cos(3 h) + 6 sin(3 h)),ωej+1,0 (xj + th) = (3 sin(h + 2 t h) − 6 sin(−h + 2 t h) + 8 h cos(t h − h) −6 h cos(−h + 2 t h) − 2 h cos(h + 2 t h) + 6 sin(t h + h) + 12 sin(2 h) − 3 sin(3 h) −15 sin(h)+8 h cos(2 t h−2 h)−6 sin(−3 h+t h)+3 sin(−3 h+2 t h)−12 h cos(−2 h+t h)+4 h cos(2 h+t h)−6 sin(2 h+t h)+6 sin(−2 h+t h))/(−30 sin(h)+24 sin(2 h)+16 h − 18 h cos(h) + 2 h cos(3 h) − 6 sin(3 h)),ωej,1 (xj + th) = (10 + 6 cos(2 h) − 2 cos(2 t h) − 4 h sin(2 t h) − 15 cos(h) −8 cos(t h)+5 cos(−3 h+2 t h)+6 h sin(−h+2 t h)−2 h sin(−3 h+2 t h)−8 h sin(t h)+6 cos(−2 h+t h)+2 cos(2 h+t h)−4 cos(−3 h+t h)+4 cos(t h−h)+12 cos(−h+2 t h)−cos(h+2 t h)−14 cos(2 t h−2 h)+6 h sin(t h+h)−cos(3 h)+2 h sin(−3 h+t h))/(30 sin(h) − 24 sin(2 h) − 16 h + 18 h cos(h) − 2 h cos(3 h) + 6 sin(3 h)),ωej+1,1 (xj + th) = (10 + 6 cos(2 h) + 2 cos(−3 h + t h) − 15 cos(h) − cos(3 h) −2 h sin(2 h + t h) − 6 h sin(−2 h + t h) + 12 cos(−h + 2 t h) + 5 cos(h + 2 t h) −cos(−3 h + 2 t h) + 2 h sin(h + 2 t h) − 6 h sin(−h + 2 t h) − 2 cos(2 t h − 2 h) −14 cos(2 t h) − 4 cos(2 h + t h) + 4 h sin(2 t h − 2 h) + 8 h sin(t h − h) + 4 cos(t h) −8 cos(t h − h) + 6 cos(t h + h))/(−30 sin(h) + 24 sin(2 h) + 16 h − 18 h cos(h) +2 h cos(3 h) − 6 sin(3 h)),ωej<0> (xj + th) = (8 + 6 cos(−h + 2 t h) + cos(h + 2 t h) − 9 cos(h) + cos(3 h) −4 cos(2 t h) − 2 cos(−3 h + t h) − 4 cos(2 t h − 2 h) + cos(−3 h + 2 t h) + 6 cos(−2 h +12t h) − 2 cos(2 h + t h) − 4 cos(t h − h) + 6 cos(t h + h) − 4 cos(t h))/(−15 sin(h) +12 sin(2 h) + 8 h − 9 h cos(h) + h cos(3 h) − 3 sin(3 h)).Äîêàçàíà òåîðåìà îá îöåíêå ïîãðåøíîñòè ïðèáëèæåíèÿ ôóíêöèè òðèãîíîìåòðè÷åñêèìè ñïëàéíàìè:Ïîãðåøíîñòü ïðèáëèæåíèÿ òðèãîíîìåòðè÷åñêèìè ñïëàéíàìè òàêîâà, ÷òî âûïîëíÿåòñÿ ñîîòíîøåíèå:Òåîðåìà 4.e|ue(x) − u(x)| ≤ Kh5 k4u0 + 5u000 + uV k[xj ,xj+1 ] ,ãäå x ∈ [xj , xj+1],, íå çàâèñèò îò h è u.K>0 KÄàëåå ðàññìàòðèâàåòñÿ ïðèáëèæåíèÿ áàçèñíûìè ñïëàéíàìè, ïîñòðîåííûìèñ ïîìîùüþ òåíçîðíîãî ïðîèçâåäåíèÿ áàçèñíûõ ñïëàéíîâ îäíîé ïåðåìåííîé.Äëÿ ïðèáëèæåíèÿ ôóíêöèè íà ïðÿìîóãîëüíèêå Ωj,k ïîëó÷àåì ôîðìóëó ñèñïîëüçîâàíèåì òåíçîðíîãî ïðîèçâåäåíèÿ:ũ(x, y) =11 XXu(xj+i , yk+p )ωj+i,0 (x)ωk+p,0 (y)+i=0 p=0+11 XXy1 Zk+1Xu0y (xj+i , yk+p )ωj+i,0 (x)ωk+p,1 (y) +u(xj+i , t)dtdyωj+i,0 (x)ωk<0> (y)i=0 p=0i=0 ykxx1 Zj+11 Zj+1XX+u(t, yk+i )dtωj<0> (x)ωk+i,0 (y) +u0y (t, yk+i )dtωj<0> (x)ωk+i,1 (y)+i=0 xji=0 xjxj+1yk+1 ZZ1X<0><0>u(x, y)dxdyωk (y)ωj (x) +u0x (xj , yk+i )dtωj,0 (x)ωk+i,0 (y)+yki=0xj+1Xyk+1Zu00xy (xj , yk+i )dtωj,0 (x)ωk+i,1 (y) +u0x (xj , t)dtωj,1 (x)ωk<0> (y).i=0ykÂçàêëþ÷åíèèñôîðìóëèðîâàíû îñíîâíûå ðåçóëüòàòû ðàáîòû.Âïðèëîæåíèåâûíåñåí èñõîäíûé êîä ïðîãðàììû íà ÿçûêå Maple äëÿ ïî-ñòðîåíèÿ íåïðåðûâíîãî ïðèáëèæåíèÿ ôóíêöèé ñïëàéíàìè äâóõ ïåðåìåííûõ íàîñíîâå ðàçðûâíîãî ñ ïîìîùüþ äîïîëíèòåëüíîé èíòåðïîëÿöèè.13Ïóáëèêàöèè àâòîðà ïî òåìå äèññåðòàöèèÏóáëèêàöèè â æóðíàëàõ, ðåêîìåíäîâàííûõ ÂÀÊ:1.Áóðîâà È.Ã., Ïîëóÿíîâ Ñ.Â.














