Диссертация (1149731), страница 26
Текст из файла (страница 26)
— P. 39–49.[29] Ioannidis, Y. E. Query optimization / Yannis E. Ioannidis // ACM Comput.Surv. — 1996. — Vol. 28, no. 1. — P. 121–123.[30] Kossmann, D. Iterative dynamic programming: a new class of queryoptimization algorithms / Donald Kossmann, Konrad Stocker // ACM Trans.Database Syst. — 2000. — Vol. 25, no. 1. — P. 43–82.[31] Steinbrunn, M. Heuristic and randomized optimization for the join orderingproblem / Michael Steinbrunn, Guido Moerkotte, Alfons Kemper // VLDBJ. — 1997. — Vol. 6, no. 3. — P. 191–208.[32] Ioannidis, Y. E. The history of histograms (abridged) / Yannis E. Ioannidis //VLDB.
— 2003. — P. 19–30.[33] Fender,P.Counterstrike:generictop-downjoinenumerationforhypergraphs / Pit Fender, Guido Moerkotte // Proceedings of the VLDBEndowment. — 2013. — Vol. 6, no. 14. — P. 1822–1833.142[34] Graefe, G. The exodus optimizer generator / Goetz Graefe, David J. DeWitt //Proceedings of the 1987 ACM SIGMOD International Conference onManagement of Data. — SIGMOD ’87. — New York, NY, USA: ACM, 1987. —P.
160–172.[35] Graefe, G. The volcano optimizer generator: Extensibility and efficient search /Goetz Graefe, William J McKenna // Data Engineering, 1993. Proceedings.Ninth International Conference on / IEEE. — 1993. — P. 209–218.[36] Trummer, I. Approximation schemes for many-objective query optimization /Immanuel Trummer, Christoph Koch // SIGMOD Conference / Ed.
byCurtis E. Dyreson, Feifei Li, M. Tamer Özsu. — ACM, 2014. — P. 1299–1310.[37] Havasu: A multi-objective, adaptive query processing framework for webdata integration / Subbarao Kambhampati, Ullas Nambiar, Zaiqing Nie,Sreelakshmi Vaddi // ASU CSE / Citeseer. — 2002.[38] Blink and it’s done: interactive queries on very large data / Sameer Agarwal,Anand P Iyer, Aurojit Panda et al.
// Proceedings of the VLDBEndowment. — 2012. — Vol. 5, no. 12. — P. 1902–1905.[39] Xu, Z. Pet: reducing database energy cost via query optimization / Zichen Xu,Yi-Cheng Tu, Xiaorui Wang // Proceedings of the VLDB Endowment. —2012. — Vol. 5, no. 12. — P. 1954–1957.[40] Ganguly, S. Query optimization for parallel execution / Sumit Ganguly,Waqar Hasan, Ravi Krishnamurthy // Proceedings of the 1992 ACM SIGMODInternational Conference on Management of Data. — SIGMOD ’92. — NewYork, NY, USA: ACM, 1992.
— P. 9–18.[41] Garofalakis, M. N. Multi-dimensional resource scheduling for parallel queries /Minos N Garofalakis, Yannis E Ioannidis // ACM SIGMOD Record / ACM. —Vol. 25. — 1996. — P. 365–376.[42] Papadimitriou,C.H.Multiobjectivequeryoptimization/Christos H Papadimitriou, Mihalis Yannakakis // Proceedings of thetwentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles ofdatabase systems / ACM. — 2001.
— P. 52–59.143[43] Schedule optimization for data processing flows on the cloud / Herald Kllapi,Eva Sitaridi, Manolis M Tsangaris, Yannis Ioannidis // Proceedings of the 2011ACM SIGMOD International Conference on Management of data / ACM. —2011. — P. 289–300.[44] Optimizing analytic data flows for multiple execution engines / Alkis Simitsis,Kevin Wilkinson, Malu Castellanos, Umeshwar Dayal // Proceedings of the2012 ACM SIGMOD International Conference on Management of Data /ACM.
— 2012. — P. 829–840.[45] Bizarro, P. Progressive parametric query optimization / Pedro Bizarro,Nicolas Bruno, David J DeWitt // Knowledge and Data Engineering, IEEETransactions on. — 2009. — Vol. 21, no. 4. — P. 582–594.[46] Hulgeri, A. Parametric query optimization for linear and piecewise linearcost functions / Arvind Hulgeri, S Sudarshan // Proceedings of the 28thinternational conference on Very Large Data Bases / VLDB Endowment. —2002. — P. 167–178.[47] Trummer,I.Multi-objectiveparametricqueryImmanuel Trummer, Christoph Koch // PVLDB.
—optimization2014. —/Vol. 8,no. 3. — P. 221–232.[48] Ranksql: query algebra and optimization for relational top-k queries /Chengkai Li, Kevin Chen-Chuan Chang, Ihab F Ilyas, Sumin Song //Proceedings of the 2005 ACM SIGMOD international conference onManagement of data / ACM. — 2005. — P. 131–142.[49] Fagin, R. Fuzzy queries in multimedia database systems / Ronald Fagin //Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposiumon Principles of database systems.
— PODS ’98. — New York, NY, USA: ACM,1998. — P. 1–10.[50] Fagin, R. A formula for incorporating weights into scoring rules /Ronald Fagin, Edward L. Wimmers // Theor. Comput. Sci. — 2000. — Vol.239, no. 2. — P. 309–338.144[51] Kießling,W.Foundationsofpreferencesindatabasesystems/Werner Kießling // Proceedings of the 28th international conference onVery Large Data Bases / VLDB Endowment. — 2002. — P. 311–322.[52] Kießling, W. Preference sql:design, implementation, experiences /Werner Kießling, Gerhard Köstler // Proceedings of the 28th internationalconference on Very Large Data Bases / VLDB Endowment. — 2002.
— P. 990–1001.[53] Overview and framework for data and information quality research /Stuart E. Madnick, Richard Y. Wang, Yang W. Lee, Hongwei Zhu // J. Dataand Information Quality. — 2009. — Vol. 1, no. 1. — P. 2:1–2:22.[54] Naumann, F. Quality-driven integration of heterogeneous informationsystems / Felix Naumann, Ulf Leser, Johann Christoph Freytag. — 1999.[55] Hu, Y.
Supporting time-constrained sql queries in oracle / Ying Hu,Seema Sundara, Jagannathan Srinivasan // Proceedings of the 33rdinternational conference on Very large data bases. — VLDB ’07. — VLDBEndowment, 2007. — P. 1207–1218.[56] Babcock, B. Dynamic sample selection for approximate query processing /Brian Babcock, Surajit Chaudhuri, Gautam Das // Proceedings of the 2003ACM SIGMOD international conference on Management of data.
— SIGMOD’03. — New York, NY, USA: ACM, 2003. — P. 539–550.[57] Accuracy estimation in approximate query processing / Carlo Dell’Aquila,Francesco Di Tria, Ezio Lefons, Filippo Tangorra // Proceedings of the14th WSEAS international conference on Computers: part of the 14thWSEAS CSCC multiconference - Volume II.
— ICCOMP’10. — Stevens Point,Wisconsin, USA: World Scientific and Engineering Academy and Society(WSEAS), 2010. — P. 452–458.[58] Chaudhuri, S. Optimized stratified sampling for approximate queryprocessing / Surajit Chaudhuri, Gautam Das, Vivek Narasayya // ACMTrans. Database Syst. — 2007. — Vol. 32, no. 2.145[59] Scalable approximate query processing with the dbo engine / Chris Jermaine,Subramanian Arumugam, Abhijit Pol, Alin Dobra // ACM Trans.
DatabaseSyst. — 2008. — Vol. 33, no. 4. — P. 23:1–23:54.[60] Tran, T. Approximate and incremental processing of complex queries againstthe web of data / Thanh Tran, Günter Ladwig, Andreas Wagner //Proceedings of the 22nd international conference on Database and expertsystems applications - Volume Part II. — DEXA’11. — Berlin, Heidelberg:Springer-Verlag, 2011. — P.
171–187.[61] Fagin, R. Optimal aggregation algorithms for middleware / Ronald Fagin,Amnon Lotem, Moni Naor // J. Comput. Syst. Sci. — 2003. — Vol. 66, no. 4. —P. 614–656.[62] Theobald, M. Top-k query evaluation with probabilistic guarantees /Martin Theobald, Gerhard Weikum, Ralf Schenkel // VLDB / Ed. byMario A. Nascimento, M. Tamer Özsu, Donald Kossmann et al. — MorganKaufmann, 2004. — P.
648–659.[63] Anytime measures for top-k algorithms / Benjamin Arai, Gautam Das,Dimitrios Gunopulos, Nick Koudas // VLDB / Ed. by Christoph Koch,Johannes Gehrke, Minos N. Garofalakis et al. — ACM, 2007. — P. 914–925.[64] Joining the results of heterogeneous search engines / Daniele Braga,Alessandro Campi, Stefano Ceri, Alessandro Raffio // Inf. Syst. — 2008. —Vol. 33, no. 7-8. — P. 658–680.[65] Schnaitter, K. Depth estimation for ranking query optimization /Karl Schnaitter, Joshua Spiegel, Neoklis Polyzotis // VLDB J. — 2009. —Vol.
18, no. 2. — P. 521–542.[66] Schnaitter, K. Optimal algorithms for evaluating rank joins in databasesystems / Karl Schnaitter, Neoklis Polyzotis // ACM Trans. Database Syst. —2008. — Vol. 35, no. 1. — P. 6:1–6:47.[67] Streaming multiple aggregations using phantoms / Rui Zhang, Nick Koudas,Beng Chin Ooi et al. // The VLDB Journal. — 2010. — Vol. 19. — P. 557–583.146[68] Jiang, Q. A framework for supporting quality of service requirements in a datastream management system: Ph.
D. thesis. — Arlington, TX, USA: Universityof Texas at Arlington, 2005. — AAI3181900.[69] Rank-aware query optimization / Ihab F Ilyas, Rahul Shah, Walid G Arefet al. // Proceedings of the 2004 ACM SIGMOD international conference onManagement of data / ACM. — 2004. — P. 203–214.[70] Deshpande, A. Adaptive query processing / Amol Deshpande, Zachary G. Ives,Vijayshankar Raman // Foundations and Trends in Databases. — 2007.
—Vol. 1, no. 1. — P. 1–140.[71] Babu, S. Proactive re-optimization / Shivnath Babu, Pedro Bizarro,David DeWitt // Proceedings of the 2005 ACM SIGMOD internationalconference on Management of data. — SIGMOD ’05. — New York, NY, USA:ACM, 2005. — P. 107–118.[72] Adaptive join processing in pipelined plans / Kwanchai Eurviriyanukul,Norman W. Paton, Alvaro A. A. Fernandes, Steven J. Lynden // Proceedingsof the 13th International Conference on Extending Database Technology. —EDBT ’10.















