Диссертация (1149607), страница 21
Текст из файла (страница 21)
28, no. 9. — P. 095709.139[163] Sergelius P., Lee J. H., Fruchart O. et al.; Intra-wire couplingin segmented Ni/Cu nanowires deposited by electrodeposition //Nanotechnology. — 2017. — Vol. 28, no. 6. — P. 065709.[164] Phatak C., Liu Y., Gulsoy E. B. et al.; Visualization of the magneticstructure of sculpted three-dimensional cobalt nanospirals // Nanoletters.
— 2014. — Vol. 14, no. 2. — Pp. 759–764.[165] Wolf D., Rodriguez L. A., BeМЃcheМЃ A. et al.; 3D magneticinduction maps of nanoscale materials revealed by electron holographictomography // Chemistry of Materials. — 2015. — Vol. 27, no. 19. —Pp. 6771–6778.[166] Reyes D., Biziere N., Warot-Fonrose B. et al.; Magnetic configurationsin Co/Cu multilayered nanowires: evidence of structural and magneticinterplay // Nano letters. — 2016.
— Vol. 16, no. 2. — Pp. 1230–1236.[167] Brunner J., Baburin I. A., Sturm S. et al.; Self-Assembled MagnetiteMesocrystalline Films: Toward Structural Evolution from 2D to 3DSuperlattices // Advanced Materials Interfaces. — 2017. — Vol. 4, no. 1.[168] Sturm E. V., Cölfen H. Mesocrystals: structural and morphogeneticaspects // Chemical Society Reviews. — 2016. — Vol. 45, no. 21. —Pp. 5821–5833.[169] Rando E., Allende S.
Magnetic reversal modes in multisegmentednanowire arrays with long aspect ratio // Journal of Applied Physics. —2015. — Vol. 118, no. 1. — P. 013905.[170] Grutter A. J., Krycka K. L., Tartakovskaya E. V. et al.; Complex ThreeDimensional Magnetic Ordering in Segmented Nanowire Arrays // ACSnano.
— 2017. — Vol. 11, no. 8. — Pp. 8311–8319.[171] Giauque W., Ashley M. F. Molecular rotation in ice at 10 K. Free energyof formation and entropy of water // Physical review. — 1933. — Vol. 43,no. 1. — P. 81.140[172] Giauque W., Stout J. The Entropy of Water and the Third Law ofThermodynamics. The Heat Capacity of Ice from 15 to 273В∘ K. //Journal of the American Chemical Society.
— 1936. — Vol. 58, no. 7. —Pp. 1144–1150.[173] Pauling L. The structure and entropy of ice and of other crystals withsome randomness of atomic arrangement // Journal of the AmericanChemical Society. — 1935. — Vol. 57, no. 12. — Pp. 2680–2684.[174] Harris M., Bramwell S., McMorrow D. et al.; Geometrical frustration inthe ferromagnetic pyrochlore Ho 2 Ti 2 O 7 // Physical Review Letters. —1997.
— Vol. 79, no. 13. — P. 2554.[175] Bramwell S. T., Gingras M. J. Spin ice state in frustrated magneticpyrochlore materials // Science. — 2001. — Vol. 294, no. 5546. —Pp. 1495–1501.[176] Moessner R., Ramirez A. P. Geometrical frustration // Phys. Today. —2006. — Vol. 59, no. 2. — P. 24.[177] Misguich G., Lhuillier C. Frustrated spin systems. — 2005.[178] Gingras M. J., McClarty P. A. Quantum spin ice: a search for gaplessquantum spin liquids in pyrochlore magnets // Reports on Progress inPhysics.
— 2014. — Vol. 77, no. 5. — P. 056501.[179] Castelnovo C., Moessner R., Sondhi S. L. Magnetic monopoles in spinice // Nature. — 2008. — Vol. 451, no. 7174. — P. 42.[180] Bramwell S. T., Giblin S., Calder S. et al.; Measurement of the chargeand current of magnetic monopoles in spin ice // Nature. — 2009. — Vol.461, no. 7266. — P. 956.[181] Fennell T., Deen P., Wildes A.
et al.; Magnetic Coulomb phase in thespin ice Ho2Ti2O7 // Science. — 2009. — Vol. 326, no. 5951. — Pp. 415–417.141[182] Ortiz-Ambriz A., Tierno P. Engineering of frustration in colloidalartificial ices realized on microfeatured grooved lattices // Naturecommunications. — 2016. — Vol. 7. — P. 10575.[183] Tierno P. Geometric frustration of colloidal dimers on a honeycombmagnetic lattice // Physical review letters. — 2016.
— Vol. 116, no. 3. —P. 038303.[184] Latimer M., Berdiyorov G., Xiao Z. et al.; Realization of artificial icesystems for magnetic vortices in a superconducting MoGe thin film withpatterned nanostructures // Physical review letters. — 2013. — Vol. 111,no. 6. — P. 067001.[185] Mellado P., Concha A., Mahadevan L. Macroscopic magneticfrustration // Physical review letters. — 2012. — Vol. 109, no. 25.
—P. 257203.[186] Wang . R., Nisoli C., Freitas R. et al.; Artificial spin ice in a geometricallyfrustrated lattice of nanoscale ferromagnetic islands // Nature. — 2006. —Vol. 439, no. 7074. — P. 303.[187] Nisoli C., Wang R., Li J. et al.; Ground state lost but degeneracy found:The effective thermodynamics of artificial spin ice // Physical reviewletters. — 2007. — Vol.
98, no. 21. — P. 217203.[188] Nisoli C., Li J., Ke X. et al.; Effective temperature in an interactingvertex system: theory and experiment on artificial spin ice // Physicalreview letters. — 2010. — Vol. 105, no. 4. — P. 047205.[189] Porro J., Bedoya-Pinto A., Berger A., Vavassori P.; Exploring thermallyinduced states in square artificial spin-ice arrays // New Journal ofPhysics. — 2013. — Vol. 15, no. 5. — P. 055012.[190] Zhang S., Gilbert I., Nisoli C. et al.; Crystallites of magnetic charges inartificial spin ice // Nature.
— 2013. — Vol. 500, no. 7464. — P. 553.142[191] Wang R., Li J., McConville W. et al.; Demagnetization protocols forfrustrated interacting nanomagnet arrays // Journal of applied physics. —2007. — Vol. 101, no. 9. — P. 09J104.[192] Morgan J. P., Stein A., Langridge S., Marrows C. H.; Thermal groundstate ordering and elementary excitations in artificial magnetic squareice // Nature Physics. — 2011.
— Vol. 7, no. 1. — P. 75.[193] Gilbert I., Chern G.-W., Zhang S. et al.; Emergent ice rule and magneticcharge screening from vertex frustration in artificial spin ice // NaturePhysics. — 2014. — Vol. 10, no. 9. — P. nphys3037.[194] Mól L., Silva R., Silva R. et al.; Magnetic monopole and string excitationsin two-dimensional spin ice // Journal of Applied Physics.
— 2009. — Vol.106, no. 6. — P. 063913.[195] Perrin Y., Canals B., Rougemaille N. Extensive degeneracy, Coulombphase and magnetic monopoles in artificial square ice // Nature. —2016. — Vol. 540, no. 7633. — P. 410.[196] Chern G.-W., Reichhardt C., Nisoli C. Realizing three-dimensionalartificial spin ice by stacking planar nano-arrays // Applied PhysicsLetters. — 2014. — Vol. 104, no.
1. — P. 013101.[197] Ribeiro I., Nascimento F., Ferreira S. et al.; Realization of RectangularArtificial Spin Ice and Direct Observation of High Energy Topology //Scientific reports. — 2017. — Vol. 7, no. 1. — P. 13982.[198] Tanaka M., Saitoh E., Miyajima H. et al.; Magnetic interactions in aferromagnetic honeycomb nanoscale network // Physical Review B. —2006. — Vol.
73, no. 5. — P. 052411.[199] Qi Y., Brintlinger T., Cumings J. Direct observation of the ice rule inan artificial kagome spin ice // Physical Review B. — 2008. — Vol. 77,no. 9. — P. 094418.143[200] Möller G., Moessner R. Magnetic multipole analysis of kagome andartificial spin-ice dipolar arrays // Physical Review B. — 2009. — Vol. 80,no.
14. — P. 140409.[201] Chern G.-W., Mellado P., Tchernyshyov O. Two-stage ordering of spinsin dipolar spin ice on the kagome lattice // Physical review letters. —2011. — Vol. 106, no. 20. — P. 207202.[202] Drisko J., Daunheimer S., Cumings J. FePd 3 as a material for studyingthermally active artificial spin ice systems // Physical Review B. —2015. — Vol. 91, no. 22. — P. 224406.[203] Rougemaille N., Montaigne F., Canals B.
et al.; Chiral nature ofmagnetic monopoles in artificial spin ice // New Journal of Physics. —2013. — Vol. 15, no. 3. — P. 035026.[204] Shen Y., Petrova O., Mellado P. et al.; Dynamics of artificial spin ice:a continuous honeycomb network // New Journal of Physics. — 2012. —Vol. 14, no. 3. — P.
035022.[205] Daunheimer S. A., Petrova O., Tchernyshyov O., Cumings J.; Reducingdisorder in artificial kagome ice // Physical review letters. — 2011. — Vol.107, no. 16. — P. 167201.[206] Zeissler K., Walton S., Ladak S. et al.; The non-random walk of chiralmagnetic charge carriers in artificial spin ice // Scientific reports. —2013. — Vol. 3. — P. 1252.[207] Chern G.-W., Morrison M. J., Nisoli C. Degeneracy and criticality fromemergent frustration in artificial spin ice // Physical review letters. —2013. — Vol.
111, no. 17. — P. 177201.[208] Gilbert I., Lao Y., Carrasquillo I. et al.; Emergent reduced dimensionalityby vertex frustration in artificial spin ice // Nature Physics. — 2016. —Vol. 12, no. 2. — P. 162.144[209] Armstrong E., O’Dwyer C. Artificial opal photonic crystals and inverseopal structures–fundamentals and applications from optics to energystorage // Journal of Materials Chemistry C. — 2015. — Vol. 3, no. 24.















