Диссертация (1149198), страница 15
Текст из файла (страница 15)
Turcotte, D. L. Self-organized criticality / D. L. Turcotte // Rep. Prog.Phys. — 1999. — Vol. 62. — Pp. 1377–1429.67. Pastor-Satorras, R. Scaling of a slope: The erosion of tilted landscapes /R. Pastor-Satorras, D.H. Rothman // Journal of Statistical Physics. —1998. — Vol. 93, no. 3-4. — Pp. 477–500.68. Pastor-Satorras, Romualdo. Stochastic Equation for the Erosion of Inclined Topography / Romualdo Pastor-Satorras, Daniel H.
Rothman //Phys. Rev. Lett. — 1998. — May. — Vol. 80. — Pp. 4349–4352.69. Lang, B. Low energy electron diffraction studies of chemisorbed gases onstepped surfaces of platinum / B. Lang, R.W. Joyner, G.A. Somorjai //Surface Science.
— 1972. — Vol. 30, no. 2. — Pp. 454–474.70. Somorjai, G.A. Introduction to surface chemistry and catalysis / G.A. Somorjai. — NY: J. Wiley and Sons, 1994.71. Chen, Leiming. Universality for Moving Stripes: A Hydrodynamic Theoryof Polar Active Smectics / Leiming Chen, John Toner // Phys. Rev. Lett.— 2013. — Aug.
— Vol. 111. — P. 088701.72. Täuber, U.C. Universality classes in the anisotropic Kardar-Parisi-Zhangmodel / U.C. Täuber, E. Frey // EPL (Europhysics Letters). — 2002. —Vol. 59, no. 5. — P. 655.http://stacks.iop.org/0295-5075/59/i=5/a=655.73. Kloss, T. Strong-coupling phases of the anisotropic Kardar-Parisi-Zhangequation / T. Kloss, L.
Canet, N. Wschebor // Physical Review E. — 2014.— Vol. 90, no. 6. — Pp. 062133–062145.12474. Kirkby, M. J. Slopes: Form and Process / M. J. Kirkby; Ed. by M J Kirkby.— London: Institute of British Geographers, 1971.75. Rodriguez-Iturbe, I. Fractal River Basins: Chance and Self-Organization /I. Rodriguez-Iturbe, A.
Rinaldo. — Cambridge: Cambridge UniversityPress, 1997.76. Scheidegger, A. E. Theoretical Geomorphology / A. E. Scheidegger. —3rd edition. — New York: Springer-Verlag, 1991.77. Kirchner, J. W. Statistical inevitability of Horton’s laws and the apparentrandomness of stream channel networks / J. W. Kirchner // Geology.
—1993. — Vol. 21, no. 7. — P. 591.78. Howard, A. D. Channel changes in badlands / A. D. Howard, G. Kerby //Geol. Soc. Am. Bull. — 1983. — Vol. 94, no. 6. — P. 739.79. Willgoose, G. A coupled channel network growth and hillslope evolutionmodel: 1.
Theory / G. Willgoose, R. L. Bras, I. Rodriguez-Iturbe // WaterResour. Res. — 1991. — Vol. 27, no. 7. — P. 1671.80. Howard, Alan D. A detachment-limited model of drainage basin evolution / Alan D. Howard // Water Resources Research. — 1994. — Vol. 30,no. 7. — Pp. 2261–2285.http://dx.doi.org/10.1029/94WR00757.81. Loewenherz, Deborah S. Stability and the initiation of channelized surface drainage: A reassessment of the short wavelength limit / Deborah S.
Loewenherz // Journal of Geophysical Research: Solid Earth. —1991. — Vol. 96, no. B5. — Pp. 8453–8464.http://dx.doi.org/10.1029/90JB02704.12582. Howard, Alan D. Modeling fluvial erosion on regional to continentalscales / Alan D. Howard, William E. Dietrich, Michele A. Seidl // Journal of Geophysical Research: Solid Earth. — 1994. — Vol. 99, no.
B7. —Pp. 13971–13986.http://dx.doi.org/10.1029/94JB00744.83. Izumi, N. Inception of channelization and drainage basin formation:upstream-driven theory / N. Izumi, G. Parker // J. Fluid Mech. — 1995.— Vol. 283. — Pp. 341–363.84. Giacometti, Achille. Continuum Model for River Networks / Achille Giacometti, Amos Maritan, Jayanth R. Banavar // Phys. Rev. Lett. — 1995.— Jul. — Vol. 75. — Pp. 577–580.85. Sculpting of a Fractal River Basin / Jayanth R. Banavar, Francesca Colaiori, Allesandro Flammini et al. // Phys.
Rev. Lett. — 1997. — Jun. —Vol. 78. — Pp. 4522–4525.86. Somfai, E. Scaling and river networks: A Landau theory for erosion /E. Somfai, L. M. Sander // Phys. Rev. E. — 1997. — Jul. — Vol. 56. —Pp. R5–R8.http://link.aps.org/doi/10.1103/PhysRevE.56.R5.87. Kramer, S. Evolution of river networks / S. Kramer, M. Marder //Phys. Rev. Lett. —1992. — Jan. —Vol. 68. —Pp. 205–208.http://link.aps.org/doi/10.1103/PhysRevLett.68.205.88. Sornette, Didier. Non-linear Langevin model of geomorphic erosion processes / Didier Sornette, Yi-Cheng Zhang // Geophysical Journal International.
— 1993. — Vol. 113, no. 2. — Pp. 382–386.12689. Dodds, Peter Sheridan. Scaling, Universality, and Geomorphology / Peter Sheridan Dodds, Daniel H. Rothman // Annual Review of Earthand Planetary Sciences. — 2000. — Vol. 28, no. 1. — Pp. 571–610.http://dx.doi.org/10.1146/annurev.earth.28.1.571.90. Giacometti, Achille. Local minimal energy landscapes in river networks /Achille Giacometti // Phys.
Rev. E. — 2000. — Nov. — Vol. 62. —Pp. 6042–6051.91. Chan, Kelvin K. Coupled length scales in eroding landscapes /Kelvin K. Chan, Daniel H. Rothman // Phys. Rev. E. — 2001. — Apr. —Vol. 63. — P. 055102.92. Newman, W. I. Cascade Model for Fluvial Geomorphology / W. I. Newman, D. L. Turcotte // Geophysical Journal International. — 1990. —Vol. 100, no. 3. — Pp. 433–439.93. Mark, David M. Scale-dependent fractal dimensions of topographic surfaces: An empirical investigation, with applications in geomorphology andcomputer mapping / David M. Mark, Peter B. Aronson // Journal of theInternational Association for Mathematical Geology.
— 1984. — Vol. 16,no. 7. — Pp. 671–683.94. Ouchi, Shunji. Measurement of self-affinity on surfaces as a trial application of fractal geometry to landform analysis / Shunji Ouchi, Mitsugu Matsushita // Geomorphology. — 1992. — Vol. 5, no. 1. — Pp. 115 – 130.95. Gilbert, Lewis E. Are topographic data sets fractal? / Lewis E.
Gilbert //pure and applied geophysics. — 1989. — Vol. 131, no. 1. — Pp. 241–254.12796. Norton, Denis. Variations in geometric measures of topographic surfacesunderlain by fractured granitic plutons / Denis Norton, Steve Sorenson //pure and applied geophysics. — 1989. — Vol. 131, no. 1. — Pp. 77–97.97. Czirók, A. Experimental evidence for self-affine roughening in a micromodel of geomorphological evolution / A. Czirók, E. Somfai, T. Vicsek //Phys. Rev. Lett. — 1993.
— Sep. — Vol. 71. — Pp. 2154–2157.98. Ландау, Л.Д. Гидродинамика / Л.Д. Ландау, Е.М. Лифшиц. — 3-еизд., перераб. изд. — М.: Наука. Гл. ред. физ-мат. лит., 1986. — Т. VIиз Теоретическая физика.99. Зельдович, Я.Б. Элементы математической физики. Среда из невзаимодействующих частиц. / Я.Б.
Зельдович, А.Д. Мышкис. — М.: Наука., 1973.100. Antonov, N.V. Renormalization group, operator product expansion andanomalous scaling in models of turbulent advection / N.V. Antonov //Journal of Physics A: Mathematical and General. — 2006. — Vol. 39,no. 25. — Pp. 7825–7865.101. Volchenckov, D.Yu. Corrections to fully developed turbulent spectra dueto compressibility of the fluid / D.Yu. Volchenckov, M.Yu. Nalimov //Theoretical and Mathematical Physics. — 1996. — Vol. 106, no. 3. —Pp. 307–318.102. Antonov, N.V. Anomalous scaling of passive scalar fields advected bythe Navier-Stokes velocity ensemble: Effects of strong compressibility andlarge-scale anisotropy / N.V.
Antonov, M.M. Kostenko // Physical Review128E - Statistical, Nonlinear, and Soft Matter Physics. — 2014. — Vol. 90,no. 6. — P. 063016.103. Конструктивная теория поля / Под ред. Сушко В.Н. Математика.Новое в зарубежной науке № 6. — М.: Мир, 1977.104. Евклидова квантовая теория поля. Марковский подход. / Под ред.Р.А. Минлос. Математика. Новое в зарубежной науке № 12.
— М.:Мир, 1978.105. Martin, P.C. Statistical dynamics of classical systems / P.C. Martin,E.D. Siggia, H.A. Rose // Physical Review A. — 1973. — Vol. 8, no. 1. —Pp. 423–437.106. Wiese, K.J. On the Perturbation Expansion of the KPZ Equation /K.J. Wiese // Journal of Statistical Physics. — 1998. — Vol. 93, no.1-2. — Pp. 143–154.107. Васильев, A. Н. Функциональные методы в квантовой теории поля истатистике / A. Н. Васильев. — Ленинград: Ленинградский Государственнй Университет, 1976.108. Doi, M.
Stochastic theory of diffusion-controlled reaction / M. Doi //Journal of Physics A: General Physics. — 1976. — Vol. 9, no. 9. —Pp. 1479–1495.109. Grassberger, P. / P. Grassberger, M. Scheunert // Fortschr. Phys. — 1980.— Vol. 28. — Pp. 547–578.110. Peliti, L. Path integral approach to birth-death processes on a lattice. /129L. Peliti // Journal de physique Paris. — 1985. — Vol. 46, no. 9. —Pp. 1469–1483.111.
Täuber, U.C. Dynamic phase transitions in diffusion-limited reactions /U.C. Täuber // Acta Physica Slovaca. — 2002. — Vol. 52, no. 6. —Pp. 505–513.112. Encyclopedia of Complexity and System Science / Ed. by R.A. Meyers.— NY: Springer Science+Business Media, LLC., 2009. — Pp. 3360–3374..















