Диссертация (1149198), страница 14
Текст из файла (страница 14)
— 1986. — Vol. 33, no. 5. — Pp. 3415–3432.10. Onuki, A. Critical Phenomena of Classical Fluids under Flow. I: MeanField Approximation / A. Onuki, K. Kawasaki // Prog. Theor. Phys. —1980. — Vol. 63, no. 1. — Pp. 122–139.11. Onuki, A. Light scattering by critical fluids under shear flow / A.
Onuki,K. Yamazaki, K. Kawasaki // Annals of Physics. — 1981. — Vol. 131,no. 1. — Pp. 217–242.12. Imaeda, T. Anisotropic Spinodal Decomposition under Shear Flow /T. Imaeda, A. Onuki, K. Kawasaki // Prog. Theor. Phys. — 1984. —Vol. 71, no. 1. — Pp. 16–26.13. Beysens, D.
Light-scattering study of a critical mixture with shear flow /D. Beysens, M. Gbadamassi, L. Boyer // Physical Review Letters. — 1979.— Vol. 43, no. 17. — Pp. 1253–1256.14. Beysens, D. Shear-induced transition to mean-field critical behavior. /D. Beysens, M. Gbadamassi // Journal de physique. Lettres. — 1979. —Vol.
40, no. 21. — Pp. 565–567.11615. Ruiz, R. Anomalous mixing times in turbulent binary mixtures at highPrandtl number / R. Ruiz, D.R. Nelson // Physical Review A. — 1981.— Vol. 24, no. 5. — Pp. 2727–2734.16. Aronovitz, J.A. Turbulence in phase-separating binary mixtures /J.A. Aronovitz, D.R. Nelson // Physical Review A. — 1984. — Vol. 29,no. 4.
— Pp. 2012–2016.17. Antonov, N.V. Effects of mixing and stirring on the critical behaviour /N.V. Antonov, M. Hnatich, J. Honkonen // Journal of Physics A: Mathematical and General. — 2006. — Vol. 39, no. 25. — Pp. 7867–7887.18. Antonov, N.V. Critical behaviour of a fluid in a random shear flow: Renormalization group analysis of a simplified model / N.V. Antonov, A.A. Ignatieva // Journal of Physics A: Mathematical and General.
— 2006. —Vol. 39, no. 44. — Pp. 13593–13620.19. Antonov, N.V. Effects of turbulent mixing on the nonequilibrium criticalbehaviour / N.V. Antonov, V.I. Iglovikov, A.S. Kapustin // Journal ofPhysics A: Mathematical and Theoretical. — 2009. — Vol. 42, no. 13. —P. 135001.20. Antonov, N.V. Effects of turbulent mixing on critical behaviour in thepresence of compressibility: Renormalization group analysis of two models / N.V. Antonov, A.S.
Kapustin // Journal of Physics A: Mathematicaland Theoretical. — 2010. — Vol. 43, no. 40. — P. 405001.21. Antonov, N.V. Effects of turbulent transfer on critical behavior /117N.V. Antonov, A.S. Kapustin, A.V. Malyshev // Theoretical and Mathematical Physics.
— 2011. — Vol. 169, no. 1. — Pp. 1470–1480.22. Sreenivasan, K. R. The Phenomenology of small-scale turbulence /K. R. Sreenivasan, R. A. Antonia // Annual Review of Fluid Mechanics. — 1997. — Vol. 29, no. 1. — Pp. 435–472.23. Falkovich, G. Particles and fields in fluid turbulence / G. Falkovich,K. Gawȩdzki, M. Vergassola // Reviews of Modern Physics. — 2001.— Vol. 73, no.
4. — Pp. 913–975.24. Krug, J. Kinetic roughening of growing surfaces / J. Krug, H. Spohn //Solids Far from Equilibrium: Growth, Morphology and Defects. — 1990.— Pp. 479–582.25. Barabási, A.-L. Fractal Concepts in Surface Growth / A.-L. Barabási,H.E. Stanley. — Cambridge: Cambridge University Press, 1995.26.
Krug, J. Origins of scale invariance in growth processes / J. Krug //Advances in Physics. — 1997. — Vol. 46, no. 2. — Pp. 139–282.27. Lässig, M. On growth, disorder, and field theory / M. Lässig // Journal ofPhysics Condensed Matter.
— 1998. — Vol. 10, no. 44. — Pp. 9905–9950.28. Eden, M. A two-dimensional growth process / M. Eden // Proceedingsof the Berkeley Symposium on Mathematical Statistics and Probability. —1961. — Vol. 4. — Pp. 223–239.29. Edwards, S.F. The surface statistics of a granular aggregate / S.F. Edwards, D.R. Wilkinson // Proc. R. Soc. London, Ser.
A. — 1982. — Vol.381. — Pp. 17–31.11830. Kim, J.M. Surface growth and crossover behaviour in a restricted solidon-solid model / J.M. Kim, J.M. Kosterlitz, T.A. Nissila // Journal ofPhysics A: Mathematical and General. — 1991. — Vol. 24, no. 23. —Pp. 5569–5586.31. Penrose, M.D. Growth and roughness of the interface for ballistic deposition / M.D.
Penrose // J. Stat. Phys. — 2008. — Vol. 131. — Pp. 247–268.32. Bak, P. Self-organized criticality: An explanation of the 1/f noise / P. Bak,C. Tang, K. Wiesenfeld // Physical Review Letters. — 1987. — Vol. 59,no. 4. — Pp. 381–384.33. Tang, C. Critical exponents and scaling relations for self-organized criticalphenomena / C. Tang, P. Bak // Physical Review Letters. — 1988. —Vol. 60, no. 23.
— Pp. 2347–2350.34. Bak, P. Punctuated equilibrium and criticality in a simple model of evolution / P. Bak, K. Sneppen // Physical Review Letters. — 1993. — Vol. 71,no. 24. — Pp. 4083–4086.35. Hwa, T. Dissipative transport in open systems: An investigation of selforganized criticality / T. Hwa, M. Kardar // Physical Review Letters. —1989. — Vol. 62, no. 16. — Pp.
1813–1816.36. Hwa, T. Avalanches, hydrodynamics, and discharge events in models ofsandpiles / T. Hwa, M. Kardar // Physical Review A. — 1992. — Vol. 45,no. 10. — Pp. 7002–7023.37. Tadic, B. Disorder-induced critical behavior in driven diffusive systems /119B. Tadic // Physical Review E - Statistical Physics, Plasmas, Fluids, andRelated Interdisciplinary Topics. — 1998.
— Vol. 58, no. 1. — Pp. 168–173.38. Avellaneda, M. Mathematical models with exact renormalization for turbulent transport / M. Avellaneda, A. Majda // Commun. Math. Phys. —1990. — Vol. 131. — Pp. 381–429.39. Avellaneda, M. Mathematical models with exact renormalization for turbulent transport II: Non–Gaussian statistics, fractal interfaces, and thesweeping effect / M.
Avellaneda, A. Majda // Commun. Math. Phys. —1992. — Vol. 146. — Pp. 139–204.40. Kardar, M. Dynamic scaling of growing interfaces / M. Kardar, G. Parisi,Y.-C. Zhang // Physical Review Letters. — 1986. — Vol. 56, no. 9. —Pp. 889–892.41. Forster, D. Large-distance and long-time properties of a randomly stirredfluid / D. Forster, D.R. Nelson, M.J. Stephen // Physical Review A. —1977. — Vol. 16, no. 2. — Pp. 732–749.42. Kardar, M.
Scaling of directed polymers in random media / M. Kardar,Y.-C. Zhang // Physical Review Letters. — 1987. — Vol. 58, no. 20. —Pp. 2087–2090.43. Bouchaud, J.P. Scaling and intermittency in Burgers turbulence /J.P. Bouchaud, M. Mézard, G. Parisi // Physical Review E. — 1995.— Vol.
52, no. 4. — Pp. 3656–3674.44. Frey, E. Mode-coupling and renormalization group results for the noisyBurgers equation / E. Frey, U.C. Täuber, T. Hwa // Physical Review E -120Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics.— 1996. — Vol. 53, no. 5 SUPPL. A.
— Pp. 4424–4438.45. The galaxy-galaxy correlation function as an indicator of critical phenomena in cosmology / T. Goldman, D. Hochberg, R. Laflamme, J. PérezMercader // Physics Letters, Section A: General, Atomic and Solid StatePhysics. — 1996. — Vol.
222, no. 3. — Pp. 177–181.46. Dynamical critical phenomena and large-scale structure of the Universe: The power spectrum for density fluctuations / J.F.G. Barbero,A. Dominguez, T. Goldman, J. Pérez-Mercader // Europhysics Letters.— 1997. — Vol. 38, no. 8. — Pp. 637–642.47. Buchert, T. Extending the scope of models for large-scale structure formation in the universe / T. Buchert, A. Domı́nguez, J. Pérez-Mercader //Astronomy and Astrophysics. — 1999. — Vol.
349, no. 2. — Pp. 343–353.48. Gaite, J. Scaling laws in the cosmic structure and renormalization group /J. Gaite, A. Domı́nguez // Journal of Physics A: Mathematical and Theoretical. — 2007. — Vol. 40, no. 25. — Pp. 6849–6857.49. Burgers equation with correlated noise: Renormalization-group analysisand applications to directed polymers and interface growth / E. Medina,T.
Hwa, M. Kardar, Y.-C. Zhang // Physical Review A. — 1989. — Vol. 39,no. 6. — Pp. 3053–3075.50. Lam, C.-H. Surface growth with temporally correlated noise / C.-H. Lam,L.M. Sander, D.E. Wolf // Physical Review A. — 1992. — Vol. 46, no. 10.— Pp. R6128–R6131.12151.
Generalizations of the Kardar-Parisi-Zhang equation / J.P. Doherty,M.A. Moore, J.M. Kim, A.J. Bray // Physical Review Letters. — 1994. —Vol. 72, no. 13. — Pp. 2041–2044.52. Kardar, M. Matrix generalizations of some dynamic field theories /M. Kardar, A. Zee // Nuclear Physics B. — 1996. — Vol. 464, no. 3.— Pp. 449–462.53. Bork, L.V. The Kardar-Parisi-Zhang equation and its matrix generalization / L.V. Bork, S.L. Ogarkov // Theoretical and Mathematical Physics.— 2014. — Vol. 178, no. 3. — Pp.
359–373.54. Pavlik, S.I. Scaling for a growing phase boundary with nonlinear diffusion / S.I. Pavlik // JETP. — 1994. — Vol. 79. — Pp. 303–306.55. Antonov, N.V. The quantum-field renormalization group in the problemof a growing phase boundary / N.V. Antonov, A.N. Vasil’ev // JETP. —1995. — Vol. 81.
— Pp. 485–489.56. Jeong, H. Anisotropic surface growth model in disordered media /H. Jeong, B. Kahng, D. Kim // Physical Review Letters. — 1996. —Vol. 77, no. 25. — Pp. 5094–5097.57. Kim, H.-J. Hybridized discrete model for the anisotropic Kardar-ParisiZhang equation / H.-J. Kim, I.-M. Kim, J.M. Kim // Physical Review E Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics.— 1998. — Vol. 58, no.
1. — Pp. 1144–1147.58. Wolf, Dietrich E. Kinetic roughening of vicinal surfaces / Diet-122rich E. Wolf // Phys. Rev. Lett. — 1991. — Sep. — Vol. 67. — Pp. 1783–1786.59. Frey, E. Two-loop renormalization-group analysis of the Burgers-KardarParisi-Zhang equation / E. Frey, U.C. Täuber // Physical Review E. —1994.
— Vol. 50, no. 2. — Pp. 1024–1045.60. Lässig, M. On the renormalization of the Kardar-Parisi-Zhang equation /M. Lässig // Nuclear Physics, Section B. — 1995. — Vol. 448, no. 3. —Pp. 559–574.61. Lässig, M. Quantized scaling of growing surfaces / M. Lässig // PhysicalReview Letters. — 1998. — Vol. 80, no. 11. — Pp. 2366–2369.62.
Nonperturbative renormalization group for the kardar-parisi-zhang equation / L. Canet, H. Chaté, B. Delamotte, N. Wschebor // Physical ReviewLetters. — 2010. — Vol. 104, no. 15. — P. 150601.63. Kloss, T. Nonperturbative renormalization group for the stationaryKardar-Parisi-Zhang equation: Scaling functions and amplitude ratios in1+1, 2+1, and 3+1 dimensions / T. Kloss, L. Canet, N. Wschebor //Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. —2012. — Vol. 86, no. 5. — P.
051124.64. Lässig, M. Upper critical dimension of the Kardar-Parisi-Zhang equation /M. Lässig, H. Kinzelbach // Physical Review Letters. — 1997. — Vol. 78,no. 5. — Pp. 903–906.65. Hairer, M. Solving the KPZ equation / M. Hairer // Annals of Mathematics. — 2013. — Vol. 178, no. 2. — Pp. 559–664.12366.















