Диссертация (1149183), страница 12
Текст из файла (страница 12)
Interaction of polynucleotides with natural and model membranes76//Nucleic acids research. – 1980. – Т. 8. – №. 11. – С. 2499-2516.41.Gromelski S., Brezesinski G. DNA condensation and interaction with zwitterionicphospholipids mediated by divalent cations //Langmuir. – 2006. – Т. 22. – №. 14.
– С.6293-6301.42.Ainalem M. L. et al. DNA binding to zwitterionic model membranes //Langmuir. –2009. – Т. 26. – №. 7. – С. 4965-4976.43.Kuvichkin V. V. Investigation of Ternary Complexes: DNA–PhosphatidylcholineLiposomes–Mg2+ by Freeze-Fracture Method and Their Role in the Formation of SomeCell Structures //Journal of Membrane Biology.
– 2009. – Т. 231. – №. 1. – С. 29-34.44.McManus J. J., Rädler J. O., Dawson K. A. Phase behavior of DPФХ in a DNA-calcium-zwitterionic lipid complex studied by small-angle X-ray scattering //Langmuir. –2003. – Т. 19. – №. 23. – С. 9630-9637.45.Bruni P. et al. Self-assembled ternary complexes of neutral liposomes,deoxyribonucleic acid, and bivalent metal cations. Promising vectors for gene transfer?//Applied physics letters. – 2006.
– Т. 88. – №. 7. – С. 73901-74100.46.Chen X. et al. Interfacial water structure associated with phospholipid membranesstudied by phase-sensitive vibrational sum frequency generation spectroscopy //Journal ofthe American Chemical Society. – 2010. – Т. 132. – №. 32.
– С. 11336-11342.47.Pisani M. et al. Biophysical Characterization of Complexes of DNA with Mixturesof the Neutral Lipids 1, 2-Dioleoyl-sn-glycero-3-phosphoethanolamine-N-hexanoylamineor 1, 2-Dioleoyl-sn-glycero-3-phosphoethanolamine-N-dodecanoylamine and 1, 2Dioleoyl-sn-glycero-3-phosphocholine in the Presence of Bivalent Metal Cations for DNATransfection //The Journal of Physical Chemistry B. – 2011. – Т. 115. – №. 34. – С. 1019810206.48.Binder H., Zschörnig O. The effect of metal cations on the phase behavior andhydration characteristics of phospholipid membranes //Chemistry and physics of lipids.
–772002. – Т. 115. – №. 1. – С. 39-61.49.Lengyel A. et al. DNA condensation and its thermal stability influenced byphospholipid bilayer and divalent cations //Colloids and Surfaces B: Biointerfaces. – 2011.– Т. 86. – №. 1. – С. 212-217.50.Duguid J. et al. Raman spectroscopy of DNA-metal complexes. I. Interactions andconformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd//Biophysical journal. – 1993. – Т. 65.
– №. 5. – С. 1916.51.Subirana J. A., Soler-Lopez M. Cations as hydrogen bond donors: a view ofelectrostatic interactions in DNA //Annual review of biophysics and biomolecularstructure. – 2003. – Т. 32. – №. 1. – С. 27-45.52.Guéroult M. et al. Mg 2+ in the Major Groove Modulates B-DNA Structure andDynamics //PloS one. – 2012. – Т. 7. – №. 7.
– С. e41704.53.Hackl E. V., Kornilova S. V., Blagoi Y. P. DNA structural transitions induced bydivalent metal ions in aqueous solutions //International journal of biologicalmacromolecules. – 2005. – Т. 35. – №. 3. – С. 175-191.54.Викторов А.
В., Грепачевский А. А., Бергельсон Л. Д. ДНК-фосфолипидноевзаимодействие. Исследование методом 31Р-ЯМР //Биоорг. химия – 1984. – Т. 10. – №.7. – С. 935-939.55.McLoughlin D. et al. Surface complexation of DNA with insoluble monolayers.Influence of divalent counterions //Langmuir. – 2005. – Т. 21. – №. 5. – С. 1900-1907.56.Kuvichkin V. V.
DNA–lipid interactions in vitro and in vivo //Bioelectrochemistry. –2002. – Т. 58. – №. 1. – С. 3-12.57.Demirsoy F. F. K., Eruygur N., Süleymanoğlu E. Supramolecular Langmuirmonolayers and multilayered vesicles of self-assembling DNA–lipid surface structures andtheir further implications in polyelectrolyte-based cell transfections //Journal ofNanoparticle Research. – 2015. – Т.
17. – №. 1. – С. 1-25.7858.Zhdanov R. I., Volkova L. A., Rodin V. V. Lipid spin labeling and NMR study ofinteractionbetweenpolyadenylicacid:polyuridilicacidduplexandeggphosphatidylcholine liposomes. Evidence for involvement of surface groups of bilayer,phosphoryl groups and metal cations //Applied Magnetic Resonance. – 1994. – Т. 7. – №.1. – С. 131-146.59.Shmoop Editorial Team. The Plasma Membrane - Shmoop Biology //Shmoop.Shmoop University, Inc., – 11 Nov. 200860.Cárdenas M. et al. Interaction between DNA and charged colloids could behydrophobically driven //Biomacromolecules.
– 2005. – Т. 6. – №. 2. – С. 832-837.61.Bessonov A., Takemoto J. Y., Simmel F. C. Probing DNA–lipid membraneinteractions with a lipopeptide nanopore //ACS nano. – 2012. – Т. 6. – №. 4. – С. 33563363.62.Suzuki Y., Endo M., Sugiyama H. Mimicking Membrane-Related BiologicalEvents by DNA Origami Nanotechnology //ACS nano. – 2015. – Т. 9. – №. 4. – С.3418-3420.63.Stengel G., Zahn R., Höök F. DNA-induced programmable fusion of phospho-lipid vesicles //Journal of the American Chemical Society. – 2007. – Т. 129. – №. 31.– С. 9584-9585.64.Chan Y.
H. M., van Lengerich B., Boxer S. G. Effects of linker sequences onvesicle fusion mediated by lipid-anchored DNA oligonucleotides //Proceedings of theNational Academy of Sciences. – 2009. – Т. 106. – №. 4. – С. 979-984.65.Selden N. S. et al. Chemically programmed cell adhesion with membrane-anchored oligonucleotides //Journal of the American Chemical Society. – 2011. – Т.134. – №. 2.
– С. 765-768.7966.Yoshina-Ishii C. et al. General method for modification of liposomes for encod-ed assembly on supported bilayers //Journal of the American Chemical Society. –2005. – Т. 127. – №. 5. – С. 1356-1357.67.Beales P. A., Nam J., Vanderlick T. K. Specific adhesion between DNA-functionalized “Janus” vesicles: size-limited clusters //Soft Matter. – 2011. – Т. 7. –№. 5. – С. 1747-1755.68.Langecker M. et al. Synthetic lipid membrane channels formed by designedDNA nanostructures //Science. – 2012. – Т. 338. – №. 6109. – С. 932-936.69.Kocabey S. et al. Membrane-assisted growth of DNA origami nanostructure ar-rays //ACS nano.
– 2015. – Т. 9. – №. 4. – С. 3530-3539.70.Borjesson K. et al. Functionalized nanostructures: redox-active porphyrin an-chors for supramolecular DNA assemblies //ACS nano. – 2010. – Т. 4. – №. 9. – С.5037-5046.71.Dans P. D. et al. Multiscale simulation of DNA //Current opinion in structuralbiology.
– 2016. – Т. 37. – С. 29-45.72.McCammon J. A., Gelin B. R., Karplus M. Dynamics of folded proteins//Nature. – 1977. – Т. 267. – №. 5612. – С. 585-590.73.Orozco M., Noy A., Pérez A. Recent advances in the study of nucleic acid flexi-bility by molecular dynamics //Current opinion in structural biology. – 2008. – Т. 18. –№. 2. – С. 185-193.74.Pérez A., Luque F. J., Orozco M. Frontiers in molecular dynamics simulations ofDNA //Accounts of Chemical Research. – 2011. – Т. 45.
– №. 2. – С. 196-205.75.poner J. et al. Molecular dynamics simulations of nucleic acids. From tetranu-cleotides to the ribosome //The journal of physical chemistry letters. – 2014. – Т. 5. –№. 10. – С. 1771-1782.8076.Levitt M. Computer simulation of DNA double-helix dynamics //Cold SpringHarbor symposia on quantitative biology. – Cold Spring Harbor Laboratory Press,1983. – Т. 47.
– С. 251-262.77.Drew H. R., Samson S., Dickerson R. E. Structure of a B-DNA dodecamer at 16K //Proceedings of the National Academy of Sciences. – 1982. – Т. 79. – №. 13. – С.4040-4044.78.Tidor B. et al. Dynamics of DNA oligomers //Journal of Biomolecular Structureand Dynamics. – 1983. – Т. 1. – №. 1. – С.
231-252.79.Pérez A., Luque F. J., Orozco M. Frontiers in molecular dynamics simulations ofDNA //Accounts of Chemical Research. – 2011. – Т. 45. – №. 2. – С. 196-205.80.Várnai P., Zakrzewska K. DNA and its counterions: a molecular dynamics study//Nucleic acids research. – 2004. – Т. 32. – №. 14. – С. 4269-4280.81.Beveridge D. L. et al. Molecular dynamics simulations of the 136 unique tetra-nucleotide sequences of DNA oligonucleotides.
I. Research design and results on d(CpG) steps //Biophysical journal. – 2004. – Т. 87. – №. 6. – С. 3799-3813.82.Dixit S. B. et al. Molecular dynamics simulations of the 136 unique tetranucleo-tide sequences of DNA oligonucleotides. II: sequence context effects on the dynamicalstructures of the 10 unique dinucleotide steps //Biophysical Journal. – 2005. – Т. 89. –№. 6. – С. 3721-3740.83.Dixit S. B., Beveridge D. L. Structural bioinformatics of DNA: a web-based tool forthe analysis of molecular dynamics results and structure prediction //Bioinformatics. –2006.
– Т. 22. – №. 8. – С. 1007-1009.84.Pérez A., Luque F. J., Orozco M. Dynamics of B-DNA on the microsecond timescale //Journal of the American Chemical Society. – 2007. – Т. 129. – №. 47. – С. 1473914745.85.Dršata T. et al. Structure, stiffness and substates of the Dickerson-Drew dodecamer81//Journal of chemical theory and computation. – 2012. – Т. 9. – №. 1. – С. 707-721.86.Cheatham T. E.
Simulation and modeling of nucleic acid structure, dynamics andinteractions //Current opinion in structural biology. – 2004. – Т. 14. – №. 3. – С. 360-367.87.Giudice E., Lavery R. Simulations of nucleic acids and their complexes //Accountsof chemical research. – 2002. – Т. 35. – №. 6. – С. 350-357.88.Laughton C. A., Harris S. A. The atomistic simulation of DNA //WileyInterdisciplinary Reviews: Computational Molecular Science.
– 2011. – Т. 1. – №. 4. – С.590-600.89.Norberg J., Nilsson L. Molecular dynamics applied to nucleic acids //Accounts ofchemical research. – 2002. – Т. 35. – №. 6. – С. 465-472.90.Orozco M., Noy A., Pérez A. Recent advances in the study of nucleic acid flexibilityby molecular dynamics //Current opinion in structural biology. – 2008. – Т. 18. – №. 2. –С. 185-193.91.poner J.















