Главная » Просмотр файлов » Автореферат

Автореферат (1149179), страница 2

Файл №1149179 Автореферат (Колебательная и химическая кинетика в многотемпературных потоках воздуха за ударными волнами) 2 страницаАвтореферат (1149179) страница 22019-06-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Международная конференция по механике "Седьмые Поляховские чтения"(Санкт-Петербург, 2015);6. XIX Международная конференция по Вычислительной механике и современным прикладным программным системам, ВМСППС’15 (Алушта, 2015);7. XXIV Всероссийский семинар с международным участием по струйным, отрывным и нестационарным течениям (Новосибирск, 2015);8. 9-я Всероссийская школа-семинар «Аэротермодинамика и физическаямеханика классических и квантовых систем» (Москва, 2015);9. XI Международная конференция Неравновесные процессы в соплах иструях, NPNJ’2016 (Алушта, 2016).Публикации. Основные результаты диссертации опубликованы в 15 работах, из них три статьи в изданиях, индексируемых в SCOPUS (1, 3, 4),и одна статья (2) в журнале, входящем в перечень рецензируемых научных7журналов, рекомендованных ВАК. Зарегистрирована программа (16) в государственном Реестре программ для ЭВМ Российской Федерации. Списокработ приведен в конце автореферата.В совместных публикациях автором получены системы уравнений длятрехтемпературного, двухтемпературного и однотемпературного описания потока воздуха и бинарных смесей за ударными волнами, написана расчетнаяпрограмма, получены численные решения рассмотренных в работе задач, ихсравнение с существующими в литературе данными, автор принимал участие в обсуждении результатов, подготовке печатных работ и докладов наконференциях.

В работах (1, 4 – 10, 12, 14, 15) Нагнибеда Е.А. принадлежатосновная идея исследований, постановка задач и обсуждение результатов. Вработах (1, 7 – 9) Куновой О.В. принадлежит расчет макропараметров воздуха за фронтом ударных волн в поуровневом приближении. В публикациях(4, 11) Кустовой Е.В. принадлежит основная идея работ, постановка задачии обсуждение результатов. Савельеву А.С. принадлежит разработка моделиописания коэффициентов скорости диссоциации молекул кислорода и азота в(4).

В работах (4, 11) Облапенко Г.П. принадлежит обобщение модели Ландау– Теллера и выражений для времен релаксации.Структура и объем диссертации. Диссертационная работа состоитиз введения, трех глав, заключения, приложения и списка литературы из 69наименования.

Общий объем диссертации составляет 99 страниц, включая 42рисунка и 6 таблиц.Основное содержание работыВо Введении обоснована актуальность темы, сформулированы цели работы, перечислены полученные новые результаты, их практическая ценностьи положения, выносимые на защиту. Кратко описано современное состояниеизучаемой проблемы.В Главе 1 представлены многотемпературные модели колебательнойи химической кинетики в высокотемпературных потоках пятикомпонентного воздуха N2 /O2 /N O/N /O и однотемпературная модель химически неравновесных течений. Модели основаны на соотношениях между характерными временами релаксации процессов, происходящих в высокотемпературной8смеси. Учитываются переходы колебательной энергии, диссоциация, рекомбинация и обменные реакции, приводящие к образованию молекул N O.В п.

1.1, 1.2 рассмотрены модели, описывающие умеренное колебательноевозбуждение, основанные на неравновесных распределениях Тринора (в газеиз ангармонических осцилляторов), распределениях Больцмана (для гармонических осцилляторов) и однотемпературной модели неравновесной химической кинетики в термически равновесном воздухе. В разделе 1.3 представлена модель течений воздуха при сильном колебательном возбуждении, учитывающая составные распределения Гордиеца, имеющие разный характер наразных группах колебательных уровней.В рамках каждой модели представлена замкнутая система уравнений длямакропараметров течения, включающая уравнения сохранения массы, импульса, энергии и уравнения неравновесной кинетики.В Главе 2 изучены коэффициенты10 -18ные члены уравнений кинетики.

Эти коэффициенты определялись на основе стро-4110 -1922ции и обмена, входящие в релаксацион-kO,N[m 3/sec]N ,NOскорости химических реакций диссоциа-TN2 =5000K1гого подхода: коэффициенты скорости реакций, зависящие от колебательных уров-310 -20ней реагентов, осреднялись по двухтемпературным колебательным распределе-200030004000500060007000T[K]Рис.

1: Зависимость kNO,Nот T на2 ,N Oниям Тринора и составному распределе- основе: (1) – составного распределению ангармонических осцилляторов и по ния, (2) – распределения Тринора, (3)однотемпературным распределениям Больц-– неравновесного распределения Больцмана. Для уровневых коэффициентов ско-мана (гармонические осцилляторы), (4)– равновесного распределения Больц-рости реакций использовались аналити- мана.ческие представления, предложенные в ра-ботах Варнаца; Русанова, Фридмана; Полака. Также использованы двухтемпературные модели Парка, Мачерета и Тринора-Маррона. Введены уровневые и двухтемпературные факторы неравновесности для обменных реакций.Представлены результаты расчетов неравновесных факторов и коэффициентов скорости реакций. Обсуждается влияние неравновесных колебательных9распределений и уровневых моделей реакций на двухтемпературные коэффициенты скорости химических реакций в воздухе.

Сравнение двухтемпературных коэффициентов скорости реакции N2 + O → N O + N , полученных наоснове разных распределений, представлено на рисунке 1 (T – температурагаза, T1N2 – температура первого колебательного уровня молекул N2 ).В области T < T1N2 двухтемпературные коэффициенты (кривые 1, 2) превышают равновесный коэффициент (кривая 4), а при T > T1N2 оказываютсяменьше равновесного. При уменьшении T заметно влияние составного распределения на коэффициенты скорости (кривая 1), с ростом T это влияниеуменьшеается и кривые 1, 2 совпадают.

Коэффициенты, осредненные по составному и триноровскому распределениям, изменяются с ростом T немонотонно и превосходят коэффициент, осредненный по неравновесному больцмановскому распределению (кривая 3).В Главе 3 течения ударно нагретого воздуха численно исследованыв трехтемпературном приближении с учетом неравновесных колебательныхраспределений Тринора и составного (ангармонических осцилляторов), Больцмана (гармонических осцилляторов), а также в рамках однотемпературноймодели химически неравновесной смеси.В п.

3.1 приведена система уравнений, описывающих изменение макропараметров течения в релаксационной зоне и условия на фронте ударной волны.В соответствии с данными о временах релаксации разных процессов в воздухе считается, что внутри фронта ударной волны происходит быстрая релаксация поступательных, вращательных степеней свободы, а также обменыколебательными квантами между молекулами одного и того же сорта, приводящие к установлению распределений Тринора непосредственно за фронтомударной волны:nci (T, T1c) cncεi − iεc1iεc1= vibr exp −−, c = N2, O2 ,ZckTkT1c(1)здесь nci – заселенности колебательных уровней молекул сорта c, nc – числовые плотности, T , T1c – температура первого колебательного уровня молекулсорта c, Zcvibr – колебательная статистическая сумма.Более медленные обмены колебательными энергиями между молекуламиразных сортов, обмены колебательной и поступательной энергией и химиче10ские реакции внутри ударного фронта предполагаются замороженными.Рассматриваются одномерные стационарные течения пятикомпонентноговоздуха за прямой ударной волной.

В трехтемпературном приближении система уравнений для макропараметров течения nN2 (x),nO2 (x),nN O (x), nN (x),nO (x) (числовые плотности), T (x), v(x) (скорость), T1N2 (x) и T1O2 (x) приводится к виду:d(nN2 v)d(nO2 v)2↔22↔32↔22↔3= RN+R,= RO+ RO,N2222dxdxd(nN O v)2↔22↔22↔3= −RN− RO+ RNO,22dxd(nN v)2↔22↔22↔32↔3= −RN+ RO− 2RN+ RNO,222dxd(nO v)2↔22↔22↔32↔3= RN− RO− 2RO+ RNO,222dxd(ρO2 WO2 v)d(ρN2 WN2 v)WW= RN,= RO,22dxdx2v2v (0)2(0) (0)2(0)(0)ρv + p = ρ v + p , h +=h +,22где релаксационные члены Rc2↔2 , Rc2↔3 описывают химические реакции(2)(3)(4)(5)(6)(7)об-мена, диссоциации и рекомбинации, RcW характеризуют изменение среднихчисел колебательных квантов Wc молекул сорта c:Wc (T, T1c) =1 Xinci (T, T1c) ,ρc ic = N2, O2 .(8)В расчетах заселенности колебательных уровней молекул в релаксационнойзоне описываются распределениями Тринора, двухтемпературным составнымраспределением, равновесным больцмановским распределением с температурой газа и неравновесным распределением Больцмана с колебательной температурой Tvc = T1c , через x обозначено расстояние от фронта ударной волны,индекс (0) обозначает параметры перед ударным фронтом, h – энтальпия единицы массы, ρ, ρc – плотность воздуха и компоненты c.

Заселенности уровнеймолекул в равновесном набегающем потоке описываются распределениямиБольцмана с температурой T (0) .11Значения макропараметров непосредственно за ударным фронтом находятся из условий сохранения массы, импульса, энергии и общего числа колебательных квантов молекул азота и молекул кислорода с учетом постоянногосостава смеси:22ρ(1) v (1) = ρ(0) v (0) , ρ(1) v (1) + p(1) = ρ(0) v (0) + p(0) ,7RT (1)2+11+µN2 µO21 X(1)ρO2+1 X(1)ρN2N2 (1)(1)2εN, T1i nN2 i (T2i+(0)ρN2)+iO (1)(1)2εO, T1 2 )i nO2 i (T1 X(9)v (1)7+= RT (0)22(0)2εN)i nN2 i (T+i1 X(0)ρO211+µN2 µO2iN2 (1)) = nN2 v (0) WN2 (T (0) , T1(1)O2 (1)) = nO2 v (0) WO2 (T (0) , T1nO2 v (1) WO2 (T (1), T1+2(0)2εO)i nO2 i (T(1)nN2 v (1) WN2 (T (1) , T1(0)N2 (0)(0)O2 (1)v (0)+, (10)2),(11)).(12)Индекс (1) обозначает значения параметров непосредственно за фронтом ударной волны.В п.3.2 приведены результаты расчетов макропараметров потока воздухав релаксационной зоне за ударными волнами. Задача решалась при условияхв набегающем потоке, соответствующих высоте 48 км: T (0) = 271 К, p(0) = 100(0)Па, при числах Маха M (0) = 16, 13, 10 и химическом составе nN2 = 0.79n(0),(0)nO2 = 0.21n(0) (n(0) – общая числовая плотность смеси в набегающем потоке).В п.3.2.1 приводится сравнение результатов, полученных в трехтемпературном и однотемпературном приближениях, с учетом и без учета ангармоничности колебаний молекул при разных числах M.

Характеристики

Список файлов диссертации

Колебательная и химическая кинетика в многотемпературных потоках воздуха за ударными волнами
Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее