Диссертация (1138224), страница 16
Текст из файла (страница 16)
939944.90. Kaya D. A new Approach to the telegraph equation: an applicationof decomposition method // Bullutin of the Institute of MathematicsAcademia Sinica. 2000. Ò. 28, 1. Ñ. 5157.91. LopezOscar,RatanovNikita.Ontheasymmetrictelegraphprocesses // Journal of Applied Probability. 2014. Ò. 51, 1. Ñ.
569589.92. Chen J., Liu F., Anh V. Analytical solution for the time-fractionaltelegraph equation by the method of separating variables // Journalof Mathematical Analysis and Applications.2008.Ò. 338, 1.Ñ. 13641377.93. Huang F. Analytical Solution for the Time-Fractional TelegraphEquation // Journal of Applied Mathematics. 2009. Ò.
2009, 1.Ñ. 19.94. OstapenkoV.A.MixedInitial-BoundaryValueProblemforTelegraph Equation in Domain with Variable Borders // Advancesin Mathematical Physics. 2012. Ò. 2012, 2012. Ñ. 2428.95. Balakrishnan V., der Broeck C. Van, Hanggi P. First-passage timesof non-Markovian processes: The case of a reflecting boundary //Rhysical Review A. 1988. Ò. 38, 8. Ñ. 42134222.96. Pogorui Anatoliy A., Rodriguez-Dagnino Ramon M. StationaryDistributionofRandomMotionwithDelayinReflectingBoundaries // Applied Mathematics.
2010. Ò. 1, 1. Ñ. 2428.97. Intertemporal General Equilibrium Model of the Russian EconomyBased on National Accounts Deaggregation / Mikhail Yu. Andreyev,Valentin P. Vrzheshch, Nikolai P. Pilnik [è äð.] // Journal ofMathematical Sciences. 2014. Ò. 197, 2. Ñ. 175236.12398. Gockenbach Mark S. Partial Differential Equations: Analytical andNumerical Methods. SIAM, 2010.124.















