Диссертация (1137741), страница 23
Текст из файла (страница 23)
yt ( j ) = Yt . Pt 108(A1.25)From the first order condition of this problem we obtain the prices for both types offirms.For the firms, who set their price freely the price is defined as follows:pt (1) =WtP. − 1 [ (G ) (ht ( j )) −1 ] tP t(A1.26)For those, who set their price one period in advance the price is: Wtpt (2) = Et −1 Pt ,P −1 − 1 [ (Gt ) (ht ( j )) ] where M =(A1.27)is a markup over marginal cost. −1A1.2.
Log-linearisation of the model1.2.1 Linearisation of the demand sideLet us first consider the budget constraint of the borrower: 1 + it −1 Pt −1DCtb = − Dt −1 + t − Tt b .1 + rt 1 + rt −1 PtLog-linearizing it around the steady state, when Dt = D low = D and Yt = Y , we obtain:(Cbt)− C b = − ( Dt −1 − D ) + D(1 + it −1 Pt− log1 + logPt −11 + rt −1 )Pt +111 +Dt − D ) + Yt b − Y b − D− log(1 + r ) ,( log (1 + it ) + Et log1+ r1+ r Pt(A1.28)where Yt b = Wt htb .In the steady state the real interest rate is given by the discount factor of the patientconsumer, so that1 + rt = (1 + it )=1, inflation at the steady state is zero,1+ rPt= 1 , andPt −1Pt.
Moreover, we have 1 + it −1 = 1 + rt −1 at the steady state.Pt +1Ctb = Yt b + Dt − Dt −1 + D t − D ( it − Et t +1 − r ) ,109(A1.29)where Ctb = logCtbDYbP, Yt b = log t , r = log −1 , t = log t , it = log (1 + it ) , D =andYPt −1YYYt b = Wt + htb .Combining first order conditions from the utility maximization problem of a saver, thefollowing Euler equation of a saver is obtained: P U cs ( Cts ) = (1 + it ) EtU cs ( Cts+1 ) t . Pt +1 (A1.30)Log-linearizing this equation and dividing it by U ccs Y we get:(Cst−CY) = E (Ctst +1−CY)+U cs( rt − r ) ,U ccs YCts = Et Cts+1 − ( it − Et t +1 − r ) ,where Cts = log(A1.31)(A1.32)U csCts=−and.YU ccs YLog-linearizing the aggregate consumption, Ct = s Cts + (1 − s )Ctb , we get:(Ct − C ) = s (Cts − C ) + (1 − s )(Cts − C ) .(A1.33)Dividing it by Y , we obtain:Ct = s Cts + (1 − s )Ctb ,where Ct = log(A1.34)Ct sCsCb, Ct = log t , Ctb = log t .YYYTaking into account that log-linearized aggregate output is:Yt = Ct + Gt ,(A1.35)Yt = s Cts + (1 − s )Ctb + Gt .(A1.36)we get:1101.2.2 Derivation of the Phillips curveFrom the first order condition of firm maximization problem we obtain the prices forboth types of firms:pt (1) =WtP, − 1 [ (G ) (ht ( j )) −1 ] tpt (2) = Et −1 (where M = −1(A1.37)P tWtP) , − 1 [ (G ) (ht ( j )) −1 ] t(A1.38)P tis a markup over marginal cost.
Log-linearizing this equation we get:log p1t = Wt + log Pt + (1 − )ht − gtP , where Wt = logWth, ht = log t .WYAn unexpected inflation can be expressed as follows: t − Et −1 t = log Pt − Et −1 log Pt =1− (log pt (1) − log Pt ) =1− (Wt + (1 − )ht − gtP ) .(A1.39)From the first order conditions we obtain the labor supply for two types of consumers:Wt =Wt = hs (hts ),(A1.40) hb (htb ).U cb (Ctb )(A1.41)U cs (Cts )Log-linearizing these conditions we obtain:Wt = s hts (i) + s −1 Cts ,(A1.42)Wt = b htb (i) + b−1 Ctb ,(A1.43)U cbhhs h b hhb h s U cshtbbbwhere = s , = b , = s , = b , ht (i ) = log .YhU ccYU ccYhsIt is assumed that = = and = = .sbsbBy aggregating these conditions we obtain:Wt = ht + −1 Ct , t − Et −1 t =1− ( ht + −1 Ct + (1 − )ht − gtP ) , where ht =111(A1.44)1Yt − Pg . t(A1.45)From market equilibrium condition Ct = Yt − Gt = Yt − gtU − gtP :t =1[(1 + ) Yt − (1 + ) gtP + −1 (Yt − gtP − gtU )] + Et −1 t ,1− (A1.46)1[((1 + ) + −1 )Yt − (1 + ) gtP − −1Gt ] + Et −1 t ,1− (A1.47)t = t = (1 + )Yt − gtP − Gt + Et −1 t ,(A1.48)1 −1(1 + ) , =where =. 1− 1+ 1.2.3 Derivation of labor income of the borrowerLog-deviation of a borrower’s labor income is defined by the wage and hours worked:Yt b = Wt + htb(A1.49)Combining Euler equation of a saver together with the labor supply of a borrower weobtain:htb = −1Wt − −1 −1 Ctb .(A1.50)From the resource constraint borrower's consumption is:Ctb = b −1Yt − b −1 s Cts − b −1 Gt ,(A1.51)Labor demand from the production function is:ht = −1Yt − −1 g p .(A1.52)Substituting it into the aggregate labor supply and combining it with the resourceconstraint we obtain:Wt = ( −1 + −1 )Yt − −1 g p − −1 Gt .(A1.53)Taking into account (A1.50), (A1.51) and (A1.53), log-deviation of borrower’s laborincome according to (A1.49) is:Yt b = Yt + −1 ( −1b −1 s − 1)Gt − (1 + ) −1 gtP ++ −1 b −1 s −1 ( Et Cts+1 − (it − Et t +1 − r )),where = (1 + −1 )( −1 + −1 ) − −1 −1 b−1 .112(A1.54)A1.3 Analysis of the model1.3.1 Short run dynamics of the modelIn the short-run the budget constraint of a borrower transforms into: D high − DˆˆC = Y − D + D S − D ( it − L − r ) , where D =,YbSbSYSb = YS + −1 ( −1b −1 − 1)GS − −1b −1 s −1 (iS − r ) , andDt(A1.55)andDt −1are thedeviations from the steady state so that: D Dt − D Dt −1 = DDt − DD − D D Dt − Dt −1− D t −1=.DDYD(A1.56)In period t debt limit falls from Dhigh to Dlow = D , in t − 1 we have Dhigh and in periodt Dlow .
Therefore, this part of the budget constraint becomes: Dt − Dt −1 D high − D=.YYThe budget constraint of a saver transforms into the following:Cˆ Ss = Cˆ Ls − (iS − L − r ) .(A1.57)1.3.2 Derivation of the output in the short run s ( + −1 ) + b D b ˆbˆYS = −(iS − r ) −D−TSb +1 − b1 − b1 − bb1 + −1 −1 s − b −1(1 + ) −1b P+ D S +GS −gS .1 − b1 − b1 − b(A1.58)After applying the definition of the natural interest rate: ( + −1 ) + b D YˆS = − s(iS − rSn ) ,1 − b(A1.59)where the natural interest rate is:rSn = r −b s ( + ) + b D −1Dˆ + D b − s ( + −1 ) + b D Sb1 + −1 −1 s − b −1(1 + ) −1b−T+G−g SP .SS−1−1−1 s ( + ) + b D s ( + ) + b D s ( + ) + b D The Phillips curve has the following representation:113(A1.60) S = ( + −1)YS − gSP − GS ,where =(A1.61)1 −1(1 + ) , = .1− 1− Combining the equations for the AS and the AD we obtain: s ( + −1 ) + b D b ˆbˆYS = −(iS − r ) −D−TSb +1 − b1 − b1 − b+b1 + s − b(1 + ) b P D ( (1 + )YS − gSP − Gt ) +GS −gS ,1 − b1 − b1 − b−1−1−1−1(A1.62) ( + −1 ) + b D bYˆS = − s(iS − r ) −Dˆ −1 − b ( + D (1 + ))1 − b ( + D (1 + ))b1 + −1 −1 s − b ( −1 + D ) D b + (1 + ) −1b P−TSb +GS −gS1 − b ( + D (1 + ))1 − b ( + D (1 + ))1 − b ( + D (1 + )).(A1.63)1.3.3 The case of a positive nominal interest rateSubstituting the definition of the positive nominal interest rate it = rt n + t in theexpression for output and implementing the definition of the natural interest rate we get: ( + −1 ) + b D YˆS = − s(iS − rSn ) ,1 − brSn = r −b s ( + ) + b D −1Dˆ +(A1.64) D b − s ( + −1 ) + b D Sb1 + −1 −1 s − b −1(1 + ) −1b−T+G−g SP ,SS−1−1−1 s ( + ) + b D s ( + ) + b D s ( + ) + b D ( + −1 ) + b D n ( + −1 ) + b D YˆS = − s(rS + S − rSn ) = − s S .1 − b1 − b(A1.65)(A1.66)Substituting the definition of the inflation in the short-run from the Phillips curve weobtain: ( + −1 ) + b D YˆS = − s [ (1 + )YS − g SP − GS ] ,1 − b114(A1.67) ( + −1 ) + b D YˆS = − s [ (1 + )YS − ( + )GS ] ,1 − bmult G = ( + )( s ( + −1 ) + b D ).1 − b + (1 + )( s ( + −1 ) + b D )(A1.68)(A1.69)An impact of the share of productive spending has on the fiscal multiplier is:mult G ( s ( + −1 ) + b D )=.1 − b + (1 + )( s ( + −1 ) + b D )(A1.70)An impact of the productivity of government investment is:mult G ( s ( + −1 ) + b D )=.1 − b + (1 + )( s ( + −1 ) + b D )(A1.71)1.3.4 The case of a zero lower boundIf deleveraging shock is sufficiently high and zero lower bound becomes binding weget:YˆS = −bbDˆ −TSb + ,1 − b ( + D (1 + ))1 − b ( + D (1 + ))1 + −1 −1 s − b ( −1 + D ) D b + D b + (1 + ) −1b P+GS −gS ,1 − b ( + D (1 + ))1 − b ( + D (1 + ))(A1.72) s ( + −1 ) + b D =r.1 − b ( + D (1 + ))After simplifying (A1.72) the following equation for the log-deviation of output can beobtained:YˆS = −bbDˆ −TSb +1 − b ( + D (1 + ))1 − b ( + D (1 + ))1 + −1 −1 s − b ( −1 + D ) −b ( D (1 + ) + (1 + ) −1 )+GS .1 − b ( + D (1 + ))(A1.73)The multiplier is:mult G =1 + −1 −1 s − b ( −1 + D ) −b ( D (1 + ) + (1 + ) −1 ).1 − b ( + D (1 + ))115(A1.74)The impact the share of productive spending, , has on the fiscal multiplier is:mult G −b ( D (1 + ) + (1 + ) −1 )=.1 − b ( + D (1 + ))(A1.75)the impact of productivity of government investment, , is:mult G −b ( D (1 + ) + (1 + ) −1 )=.1 − b ( + D (1 + ))(A1.76)Appendix 22.1 Derivation of lifetime budget constraint of a Ricardian agentBy integrating the budget constraint of a Ricardian agent we obtain:a ( , t ) + a ( , t ) = c R ( , )e( r (t )+ )(t − ) d ,RH(A2.1)twhere the following NPG condition has been imposed:lim a ( , )e( r (t )+ )( −t ) = 0. →(A2.2)Ricardian consumer maximizes expected lifetime utility subject to its lifetime budgetconstraint:L = (1 − ) ln c R ( , ) + ln g e( + )(t − ) d + (t ) a ( , t ) + aHR ( , t ) − c R ( , )e( r ( t )+ )(t − ) d ttTaking into account first order condition (1 − ) / c R ( , )e( + )(t − ) = (t )e( r (t )+ )(t − ) and(1 − ) / c R ( , t ) = (t ) for = t we obtain:ttR( + )( t − )d = c R ( , )e( r (t )+ )(t − ) d , c ( , t )ec R ( , t ) −e( + )(t − ) = a ( , t ) + aHR (t ) t+c R ( , t ) = ( + ) a (, t ) + aHR (t ) .(A2.3)Aggregate consumption of Ricardian agents can be obtained by aggregating the individualconsumption:tC (t ) = eR− ( −t )tc ( , t )d = e ( −t ) ( + ) a ( , t ) + aHR (t ) d =R−116(A2.4)t t= ( + ) e ( −t ) a ( , t )d + e ( −t ) aHR (t )d = ( + ) A(t ) + AHR (t ) .− −2.2.
Derivation of the aggregate Euler equation (the case of homogeneous agents)The equation (3.20) can be simplified as follows:C (t ) L(t )c (t , t ) − C (t )= r (t ) − +.C (t )C (t )(A2.5)As new generations are born without any financial assets ( a (t , t ) = 0 ), thus from (3.8)c (t , t ) = ( + )a H (t , t ) and taking into account (3.19) we get: L(t )c (t , t ) − C (t ) L(t )a H (t , t ) − ( A(t ) + A H (t ))= ( + ).C (t )C (t )(A2.6)Aggregate human wealth is defined as follows:t −AH (t ) = a H ( , t ) d +t − −t at−H( , t ) 0t − d ,(A2.7)where:tt a H ( , t ) = (1 − t L )W N ( , t )e R (t , )+ (t − ) d + z e R (t , )+ (t − ) d ,t − (A2.8)R(t , ) = r ( s)ds.t a ( , t ) = (1 − t L )W N ( , t )e R (t , ) + (t − ) d −0t − Ht +−tWeR ( t , ) + ( t − )d +ze (A2.9)R ( t , ) + ( t − )d .+tFor the simplicity of the analysis let us assume the constant interest rate r (so thatequations could be applicable to the steady state). a ( , t ) = (1 − t L )W N ( , t )e( r + )(t − ) d −0t − Ht()tz− W 1 − e − ( r + )( + −t ) +e− ( r + )( + −t ) .r+r (t ) + (A2.10)We know that age dependent wage can be written as follows:W N ( , t ) = E ( − ) FN ( k (t ),1) = 0 e − ( − ) FN ( k (t ),1),117(A2.11) (1 − tL)W N ( , t )e( r + )(t − ) d = e ( −t ) 0 (t ),(A2.12)twhere 0 (t ) is defined as follows:0 (t ) = 0 (1 − t L )FN (k (t ),1)e( r + + )(t − ) d .(A2.13)tSubstituting this definition into the expressions of human wealth of workers andretirees, noted above, we get:t −−L( , t ) a H ( , t ) d =t − t − e − te− ( −t )z 0 (t ) +d =er + (A2.14) z − = L(t ) 0 (t )e−( + ) −e .r+ +t L( , t ) at−t= e − tet−H( , t ) 0t − d = ( −t )tz0 (t ) − W (1 − e− ( r + )( + −t ) ) +e− ( r + )( + −t ) d =er+r+(A2.15) t (t + z ) − e− r − e− nL = L(t ) 0 (t ) 1 − e− ( + ) − W (1 − e− ) + We .Lr+r+ n − r +()The aggregate human wealth is:− r 0 (t )− e− nL− tW + z eA (t ) = L(t ) +er + nL − r +H ,(A2.16)where it was taken into account that: tW (1 − e− ) = ze− − d (t ) tW + z =Fromtheexpressionforworking-agehouseholds,z − d (t ).1 − e−takingintoaccounttW = d + (tW + z )e − : t + z −( r (t )+ ) −ta H (t , t ) = 0 (t ) + W−e− W = er (t ) + r (t ) + () t + z − r (t ) − nLd (t )= 0 (t ) + e− W−e−. er (t ) + r (t ) + ()(A2.17)After substituting this expression in the equation for AH and eliminating 0 (t ) we get: L(t )a H (t , t ) = ( + ) AH (t ) − L(t ),118(A2.18)where = e− z − d (t ) e− r − e− nL−d (t )+ (r + + )− Lr+ 1− e r + n − r.Taking into account the expression for a H (t , t ) and taking into account (3.19) we get:C (t ) L(t ) + ( + ) A(t )= r (t ) − + + n L − ( + ).C (t )C (t )(A2.19)2.3.















